Fancy Plots using Plotly
-
- Last edited 2 years ago by Kaustubh Shivdikar
-
in a nutshell: elegant plots for adding in to research papers. |
- This is a collection of simple plots using the plotly library.
- It consists of elegant color schemes and easy to ready adjustable fonts.
- The reason for using plotly is that it allows for HTML plots that can be scaled and zoomed after plotting.
Contents
Installation
We need the plotly-express and kaleido library.
Conda
conda install -c plotly plotly_express==0.4.0 conda install -c conda-forge python-kaleido
Pip
pip install plotly_express==0.4.0 pip install kaleido
Line Plots
CSV Data:
animal,age,cuteness cat,1,5 cat,2,8 cat,3,12 cat,4,15 cat,5,14 cat,6,15 cat,7,16 cat,8,18 cat,9,17 cat,10,10 dog,1,12 dog,2,14 dog,3,18 dog,4,20 dog,5,19 dog,6,17 dog,7,14 dog,8,9 dog,9,8 dog,10,6
Code:
import plotly.express as pximport pandas as pd from tqdm import tqdm
PLOTS_DIR = "./plots" PLOT_NAME = "cat_v_dog" PLOT_TYPES = ["svg", "png", "html", "pdf", "jpeg"] FIG_DIR = PLOTS_DIR + "/" + PLOT_NAME !mkdir -p $FIG_DIR
- Plot Size
PLOT_WIDTH = 800 PLOT_HEIGHT = 300
df = pd.read_csv('./data/sample.csv') fig = px.line(df, x="age", y="cuteness", color="animal") fig.update_layout(title="Cat vs Dog Cuteness", xaxis_title="Animal's Age", yaxis_title="Cuteness Rating", legend_title="Animal", font=dict( family="Courier New, monospace", size=14, color="RebeccaPurple" ))
fig.update_layout(
autosize=True, width=PLOT_WIDTH, height=PLOT_HEIGHT, margin=dict( l=50, r=50, b=50, t=50, pad=4 ), legend=dict( yanchor="top", y=0.999, xanchor="left", x=0.001))
fig.show()
- Save Plot
for i in tqdm(range(len(PLOT_TYPES))):
if PLOT_TYPES[i] == "html": fig.write_html(FIG_DIR + "/" + PLOT_NAME + "." + PLOT_TYPES[i]) else:fig.write_image(FIG_DIR + "/" + PLOT_NAME + "." + PLOT_TYPES[i], scale=5)
import plotly.express as pximport pandas as pd from tqdm import tqdm
PLOTS_DIR = "./plots" PLOT_NAME = "cat_v_dog" PLOT_TYPES = ["svg", "png", "html", "pdf", "jpeg"] FIG_DIR = PLOTS_DIR + "/" + PLOT_NAME !mkdir -p $FIG_DIR
- Plot Size
PLOT_WIDTH = 800 PLOT_HEIGHT = 300
df = pd.read_csv('./data/sample.csv') fig = px.line(df, x="age", y="cuteness", color="animal") fig.update_layout(
title="Cat vs Dog Cuteness", xaxis_title="Animal's Age", yaxis_title="Cuteness Rating", legend_title="Animal", font=dict( family="Courier New, monospace", size=14, color="RebeccaPurple" ))
fig.update_layout(
autosize=True, width=PLOT_WIDTH, height=PLOT_HEIGHT, margin=dict( l=50, r=50, b=50, t=50, pad=4 ), legend=dict( yanchor="top", y=0.999, xanchor="left", x=0.001))
fig.show()
- Save Plot
for i in tqdm(range(len(PLOT_TYPES))):
if PLOT_TYPES[i] == "html": fig.write_html(FIG_DIR + "/" + PLOT_NAME + "." + PLOT_TYPES[i]) else:fig.write_image(FIG_DIR + "/" + PLOT_NAME + "." + PLOT_TYPES[i], scale=5)
Output:
Scatter Plots
Bar Plots
Radar Plots
Bubble Charts
Box Plots
2D Histograms