You are viewing an old version of this page. Return to the latest version.
Difference between revisions of "Fancy Plots using Plotly"
m (Line plots completed) (Tag: Visual edit) |
m (Scatter plots added) (Tag: Visual edit) |
||
Line 1: | Line 1: | ||
− | {{Nutshell|elegant plots for adding in to research papers.|title=}} | + | {{Nutshell|elegant plots for adding in to research papers.|title=Plotly}} |
*This is a collection of simple plots using the plotly library. | *This is a collection of simple plots using the plotly library. | ||
Line 21: | Line 21: | ||
==Line Plots== | ==Line Plots== | ||
− | |||
+ | ==== CSV Data ==== | ||
<syntaxhighlight lang="python"> | <syntaxhighlight lang="python"> | ||
animal,age,cuteness | animal,age,cuteness | ||
Line 47: | Line 47: | ||
</syntaxhighlight> | </syntaxhighlight> | ||
− | Code | + | ==== Code ==== |
− | |||
<syntaxhighlight lang="py" line="1"> | <syntaxhighlight lang="py" line="1"> | ||
import plotly.express as px | import plotly.express as px | ||
Line 106: | Line 105: | ||
</syntaxhighlight> | </syntaxhighlight> | ||
− | Output | + | ==== Output ==== |
− | |||
[[File:Cat vs dog cuteness.png|frameless|733x733px]] | [[File:Cat vs dog cuteness.png|frameless|733x733px]] | ||
==Scatter Plots== | ==Scatter Plots== | ||
− | < | + | |
+ | ==== CSV Data ==== | ||
+ | <syntaxhighlight lang="py" line="1"> | ||
+ | type,area,price | ||
+ | Condo,900,100 | ||
+ | Apartment,565,250 | ||
+ | Condo,500,80 | ||
+ | Apartment,800,75 | ||
+ | Condo,750,100 | ||
+ | Condo,850,110 | ||
+ | Apartment,790,120 | ||
+ | Condo,755,60 | ||
+ | Apartment,325,125 | ||
+ | Condo,300,50 | ||
+ | </syntaxhighlight> | ||
+ | |||
+ | ==== Code ==== | ||
+ | <syntaxhighlight lang="py" line="1"> | ||
+ | import plotly.express as px | ||
+ | import pandas as pd | ||
+ | from tqdm import tqdm | ||
+ | |||
+ | PLOTS_DIR = "./plots" | ||
+ | PLOT_NAME = "house_price" | ||
+ | PLOT_TYPES = ["svg", "png", "html", "pdf", "jpeg"] | ||
+ | FIG_DIR = PLOTS_DIR + "/" + PLOT_NAME | ||
+ | !mkdir -p $FIG_DIR | ||
+ | |||
+ | # Plot Size | ||
+ | PLOT_WIDTH = 800 | ||
+ | PLOT_HEIGHT = 300 | ||
+ | |||
+ | |||
+ | df = pd.read_csv('./data/scatter.csv') | ||
+ | fig = px.scatter(df, x="area", y="price", color="type") | ||
+ | |||
+ | |||
+ | fig.update_layout( | ||
+ | title="House Pricing", | ||
+ | xaxis_title="Area", | ||
+ | yaxis_title="Price", | ||
+ | legend_title="House Price", | ||
+ | font=dict( | ||
+ | family="Courier New, monospace", | ||
+ | size=14, | ||
+ | color="RebeccaPurple" | ||
+ | ) | ||
+ | ) | ||
+ | |||
+ | fig.update_layout( | ||
+ | autosize=True, | ||
+ | width=PLOT_WIDTH, | ||
+ | height=PLOT_HEIGHT, | ||
+ | margin=dict( | ||
+ | l=50, | ||
+ | r=50, | ||
+ | b=50, | ||
+ | t=50, | ||
+ | pad=4 | ||
+ | ), | ||
+ | legend=dict( | ||
+ | yanchor="top", | ||
+ | y=0.999, | ||
+ | xanchor="left", | ||
+ | x=0.001) | ||
+ | ) | ||
+ | fig.show() | ||
+ | # Save Plot | ||
+ | for i in tqdm(range(len(PLOT_TYPES))): | ||
+ | if PLOT_TYPES[i] == "html": | ||
+ | fig.write_html(FIG_DIR + "/" + PLOT_NAME + "." + PLOT_TYPES[i]) | ||
+ | else: | ||
+ | fig.write_image(FIG_DIR + "/" + PLOT_NAME + "." + PLOT_TYPES[i], scale=5) | ||
+ | </syntaxhighlight> | ||
+ | |||
+ | ==== Output ==== | ||
+ | [[File:House Pricing Plot.png|frameless|750x750px]] | ||
==Bar Plots== | ==Bar Plots== | ||
− | + | ||
+ | ==== CSV Data ==== | ||
+ | |||
+ | ==== Code ==== | ||
+ | |||
+ | ==== Output ==== | ||
==Radar Plots== | ==Radar Plots== | ||
− | + | ||
+ | ==== CSV Data ==== | ||
+ | |||
+ | ==== Code ==== | ||
+ | |||
+ | ==== Output ==== | ||
==Bubble Charts== | ==Bubble Charts== | ||
− | + | ||
+ | ==== CSV Data ==== | ||
+ | |||
+ | ==== Code ==== | ||
+ | |||
+ | ==== Output ==== | ||
==Box Plots== | ==Box Plots== | ||
− | + | ||
+ | ==== CSV Data ==== | ||
+ | |||
+ | ==== Code ==== | ||
+ | |||
+ | ==== Output ==== | ||
==2D Histograms== | ==2D Histograms== | ||
− | + | ||
+ | ==== CSV Data ==== | ||
+ | |||
+ | ==== Code ==== | ||
+ | |||
+ | ==== Output ==== |
Revision as of 15:38, 18 February 2022
Plotly in a nutshell: elegant plots for adding in to research papers. |
- This is a collection of simple plots using the plotly library.
- It consists of elegant color schemes and easy to ready adjustable fonts.
- The reason for using plotly is that it allows for HTML plots that can be scaled and zoomed after plotting.
Contents
Installation
We need the plotly-express and kaleido library.
Conda
conda install -c plotly plotly_express==0.4.0 conda install -c conda-forge python-kaleido
Pip
pip install plotly_express==0.4.0 pip install kaleido
Line Plots
CSV Data
animal,age,cuteness cat,1,5 cat,2,8 cat,3,12 cat,4,15 cat,5,14 cat,6,15 cat,7,16 cat,8,18 cat,9,17 cat,10,10 dog,1,12 dog,2,14 dog,3,18 dog,4,20 dog,5,19 dog,6,17 dog,7,14 dog,8,9 dog,9,8 dog,10,6
Code
import plotly.express as px import pandas as pd from tqdm import tqdm PLOTS_DIR = "./plots" PLOT_NAME = "cat_v_dog" PLOT_TYPES = ["svg", "png", "html", "pdf", "jpeg"] FIG_DIR = PLOTS_DIR + "/" + PLOT_NAME !mkdir -p $FIG_DIR # Plot Size PLOT_WIDTH = 800 PLOT_HEIGHT = 300 df = pd.read_csv('./data/sample.csv') fig = px.line(df, x="age", y="cuteness", color="animal") fig.update_layout( title="Cat vs Dog Cuteness", xaxis_title="Animal's Age", yaxis_title="Cuteness Rating", legend_title="Animal", font=dict( family="Courier New, monospace", size=14, color="RebeccaPurple" ) ) fig.update_layout( autosize=True, width=PLOT_WIDTH, height=PLOT_HEIGHT, margin=dict( l=50, r=50, b=50, t=50, pad=4 ), legend=dict( yanchor="top", y=0.999, xanchor="left", x=0.001) ) fig.show() # Save Plot for i in tqdm(range(len(PLOT_TYPES))): if PLOT_TYPES[i] == "html": fig.write_html(FIG_DIR + "/" + PLOT_NAME + "." + PLOT_TYPES[i]) else: fig.write_image(FIG_DIR + "/" + PLOT_NAME + "." + PLOT_TYPES[i], scale=5)
Output
Scatter Plots
CSV Data
type,area,price Condo,900,100 Apartment,565,250 Condo,500,80 Apartment,800,75 Condo,750,100 Condo,850,110 Apartment,790,120 Condo,755,60 Apartment,325,125 Condo,300,50
Code
import plotly.express as px import pandas as pd from tqdm import tqdm PLOTS_DIR = "./plots" PLOT_NAME = "house_price" PLOT_TYPES = ["svg", "png", "html", "pdf", "jpeg"] FIG_DIR = PLOTS_DIR + "/" + PLOT_NAME !mkdir -p $FIG_DIR # Plot Size PLOT_WIDTH = 800 PLOT_HEIGHT = 300 df = pd.read_csv('./data/scatter.csv') fig = px.scatter(df, x="area", y="price", color="type") fig.update_layout( title="House Pricing", xaxis_title="Area", yaxis_title="Price", legend_title="House Price", font=dict( family="Courier New, monospace", size=14, color="RebeccaPurple" ) ) fig.update_layout( autosize=True, width=PLOT_WIDTH, height=PLOT_HEIGHT, margin=dict( l=50, r=50, b=50, t=50, pad=4 ), legend=dict( yanchor="top", y=0.999, xanchor="left", x=0.001) ) fig.show() # Save Plot for i in tqdm(range(len(PLOT_TYPES))): if PLOT_TYPES[i] == "html": fig.write_html(FIG_DIR + "/" + PLOT_NAME + "." + PLOT_TYPES[i]) else: fig.write_image(FIG_DIR + "/" + PLOT_NAME + "." + PLOT_TYPES[i], scale=5)