You are viewing an old version of this page. Return to the latest version.
Difference between revisions of "Fancy Plots using Plotly"
m (Pie chart template added) (Tag: Visual edit) |
m (Added Dataframe code) (Tag: Visual edit) |
||
(2 intermediate revisions by the same user not shown) | |||
Line 21: | Line 21: | ||
==Line Plots== | ==Line Plots== | ||
+ | CSV Data | ||
− | |||
<syntaxhighlight lang="python"> | <syntaxhighlight lang="python"> | ||
animal,age,cuteness | animal,age,cuteness | ||
Line 47: | Line 47: | ||
</syntaxhighlight> | </syntaxhighlight> | ||
− | + | Code | |
+ | |||
<syntaxhighlight lang="py" line="1"> | <syntaxhighlight lang="py" line="1"> | ||
import plotly.express as px | import plotly.express as px | ||
Line 105: | Line 106: | ||
</syntaxhighlight> | </syntaxhighlight> | ||
− | + | Output | |
+ | |||
[[File:Cat vs dog cuteness.png|frameless|733x733px]] | [[File:Cat vs dog cuteness.png|frameless|733x733px]] | ||
+ | |||
+ | ==== Creating DataFrame from Arrays ==== | ||
+ | <syntaxhighlight lang="py"> | ||
+ | TOTAL_NUMBERS = 1000 | ||
+ | y = np.zeros(TOTAL_NUMBERS) | ||
+ | x = np.zeros(TOTAL_NUMBERS) | ||
+ | df = pd.DataFrame(data={"X_Label": x, "Y_Label": y}) | ||
+ | </syntaxhighlight> | ||
==Scatter Plots== | ==Scatter Plots== | ||
+ | CSV Data | ||
− | |||
<syntaxhighlight lang="py" line="1"> | <syntaxhighlight lang="py" line="1"> | ||
type,area,price | type,area,price | ||
Line 125: | Line 135: | ||
</syntaxhighlight> | </syntaxhighlight> | ||
− | + | Code | |
+ | |||
<syntaxhighlight lang="py" line="1"> | <syntaxhighlight lang="py" line="1"> | ||
import plotly.express as px | import plotly.express as px | ||
Line 184: | Line 195: | ||
</syntaxhighlight> | </syntaxhighlight> | ||
− | + | Output | |
+ | |||
[[File:House Pricing Plot.png|frameless|750x750px]] | [[File:House Pricing Plot.png|frameless|750x750px]] | ||
==Bar Plots== | ==Bar Plots== | ||
+ | CSV Data | ||
− | + | Code | |
− | |||
− | |||
− | + | Output | |
==Radar Plots== | ==Radar Plots== | ||
+ | CSV Data | ||
− | + | Code | |
− | + | Output | |
− | |||
− | |||
==Pie Charts== | ==Pie Charts== | ||
+ | CSV Data | ||
− | + | Code | |
− | |||
− | |||
− | + | Output | |
==Bubble Charts== | ==Bubble Charts== | ||
+ | CSV Data | ||
− | + | Code | |
− | |||
− | |||
− | + | Output | |
==Box Plots== | ==Box Plots== | ||
+ | CSV Data | ||
− | + | Code | |
− | + | Output | |
− | |||
− | |||
==2D Histograms== | ==2D Histograms== | ||
+ | CSV Data | ||
− | + | Code | |
− | |||
− | |||
− | + | Output |
Latest revision as of 13:47, 15 March 2022
Plotly in a nutshell: elegant plots for adding in to research papers. |
- This is a collection of simple plots using the plotly library.
- It consists of elegant color schemes and easy to ready adjustable fonts.
- The reason for using plotly is that it allows for HTML plots that can be scaled and zoomed after plotting.
Contents
Installation
We need the plotly-express and kaleido library.
Conda
conda install -c plotly plotly_express==0.4.0 conda install -c conda-forge python-kaleido
Pip
pip install plotly_express==0.4.0 pip install kaleido
Line Plots
CSV Data
animal,age,cuteness cat,1,5 cat,2,8 cat,3,12 cat,4,15 cat,5,14 cat,6,15 cat,7,16 cat,8,18 cat,9,17 cat,10,10 dog,1,12 dog,2,14 dog,3,18 dog,4,20 dog,5,19 dog,6,17 dog,7,14 dog,8,9 dog,9,8 dog,10,6
Code
import plotly.express as px import pandas as pd from tqdm import tqdm PLOTS_DIR = "./plots" PLOT_NAME = "cat_v_dog" PLOT_TYPES = ["svg", "png", "html", "pdf", "jpeg"] FIG_DIR = PLOTS_DIR + "/" + PLOT_NAME !mkdir -p $FIG_DIR # Plot Size PLOT_WIDTH = 800 PLOT_HEIGHT = 300 df = pd.read_csv('./data/sample.csv') fig = px.line(df, x="age", y="cuteness", color="animal") fig.update_layout( title="Cat vs Dog Cuteness", xaxis_title="Animal's Age", yaxis_title="Cuteness Rating", legend_title="Animal", font=dict( family="Courier New, monospace", size=14, color="RebeccaPurple" ) ) fig.update_layout( autosize=True, width=PLOT_WIDTH, height=PLOT_HEIGHT, margin=dict( l=50, r=50, b=50, t=50, pad=4 ), legend=dict( yanchor="top", y=0.999, xanchor="left", x=0.001) ) fig.show() # Save Plot for i in tqdm(range(len(PLOT_TYPES))): if PLOT_TYPES[i] == "html": fig.write_html(FIG_DIR + "/" + PLOT_NAME + "." + PLOT_TYPES[i]) else: fig.write_image(FIG_DIR + "/" + PLOT_NAME + "." + PLOT_TYPES[i], scale=5)
Output
Creating DataFrame from Arrays
TOTAL_NUMBERS = 1000 y = np.zeros(TOTAL_NUMBERS) x = np.zeros(TOTAL_NUMBERS) df = pd.DataFrame(data={"X_Label": x, "Y_Label": y})
Scatter Plots
CSV Data
type,area,price Condo,900,100 Apartment,565,250 Condo,500,80 Apartment,800,75 Condo,750,100 Condo,850,110 Apartment,790,120 Condo,755,60 Apartment,325,125 Condo,300,50
Code
import plotly.express as px import pandas as pd from tqdm import tqdm PLOTS_DIR = "./plots" PLOT_NAME = "house_price" PLOT_TYPES = ["svg", "png", "html", "pdf", "jpeg"] FIG_DIR = PLOTS_DIR + "/" + PLOT_NAME !mkdir -p $FIG_DIR # Plot Size PLOT_WIDTH = 800 PLOT_HEIGHT = 300 df = pd.read_csv('./data/scatter.csv') fig = px.scatter(df, x="area", y="price", color="type") fig.update_layout( title="House Pricing", xaxis_title="Area", yaxis_title="Price", legend_title="House Price", font=dict( family="Courier New, monospace", size=14, color="RebeccaPurple" ) ) fig.update_layout( autosize=True, width=PLOT_WIDTH, height=PLOT_HEIGHT, margin=dict( l=50, r=50, b=50, t=50, pad=4 ), legend=dict( yanchor="top", y=0.999, xanchor="left", x=0.001) ) fig.show() # Save Plot for i in tqdm(range(len(PLOT_TYPES))): if PLOT_TYPES[i] == "html": fig.write_html(FIG_DIR + "/" + PLOT_NAME + "." + PLOT_TYPES[i]) else: fig.write_image(FIG_DIR + "/" + PLOT_NAME + "." + PLOT_TYPES[i], scale=5)
Output
Bar Plots
CSV Data
Code
Output
Radar Plots
CSV Data
Code
Output
Pie Charts
CSV Data
Code
Output
Bubble Charts
CSV Data
Code
Output
Box Plots
CSV Data
Code
Output
2D Histograms
CSV Data
Code
Output