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a b s t r a c t 

This paper evaluates the reproducibility of a Supercomputing 17 paper titled Extreme Scale Multi-Physics 

Simulations of the Tsunamigenic 2004 Sumatra Megathrust Earthquake. We evaluate reproducibility on a 

significantly smaller computer system than used in the original work. We found that we able to demon- 

strate reproducibility of the multi-physics simulations on a single-node system, as well as confirm multi- 

node scaling. However, reproducibility of the visual and geophysical simulation results were inconclusive 

due to issues related to input parameters provided to our model. The SC 17 paper provided results for 

both CPU-based simulations as well as Xeon Phi based simulations. Since our cluster uses NVIDIA V100s 

for acceleration, we are only able to assess the CPU-based results in terms of reproducibility. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

In the SC17 paper titled Extreme Scale Multi-Physics Sim-

lations of the Tsunamigenic 2004 Sumatra Megathrust Earth-

uake [1] , SeisSol [2] is used to simulate a dynamic rupture

cenario of the 2004 Sumatra earthquake. To simulate an earth-

uake of this magnitude, SeisSol required end-to-end optimization

n order to scale well on a highly parallel computer architec-

ure. The SC17 paper evaluates the performance of the resulting

mplementation, called Shaking Corals. 

The performance enhancements provided by Shaking Corals

ver previous versions of the simulation can be attributed to a

umber of optimizations applied to the ADER-DG scheme used in

he baseline SeisSol version for solving the seismic wave equation.

phoff et al. [1] modify the scheme by expanding large matri- 

es appearing in wave-propagation terms into chain products of

maller matrices, which avoids cache evictions and reduces the

otal required number of operations. The Shaking Corals imple-

entation also adds support for local time stepping (LTS) during
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imulations with dynamic rupture, allowing further speed-up over

he improvements to wave-propagation kernels already mentioned.

This reproducibility report evaluates SeisSol’s performance on a

maller computer system using two different performance metrics:

) single node performance, and 2) performance scaling. In addi-

ion, the geophysical output data from our simulation is compared

o the results presented by Uphoff et al. [1] . We evaluate SeisSol

ased on these performance metrics and accuracy dimensions to

ssess reproducibility of the results appearing in the original SC17

aper. 

. Background 

Faced with the challenge of predicting earthquakes reliably,

he capacity to model earthquake dynamics with large-scale sim-

lations is highly desirable in order to identify likely earthquake

ones. With the recent growing interest in earthquake simulation

oftware, the need for rigorous optimization and petascale perfor-

ance in realistic, large-scale simulations has become increasingly

pparent. 

Uphoff et al. [1] present a simulation of the 2004 Sumatra-

ndaman earthquake. This scale of simulation was only made

ossible through end-to-end optimization of the SeisSol simulator,

alled Shaking Corals (SC). Shaking Corals uses the ADER-DG

cheme to perform numerical simulation of seismic wave propa-

ation and dynamic rupture, characterized by a compute-bound
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Table 1 

Cluster specifications. 

Hardware Description 

Number of Nodes 4 Nodes 

Node Model PowerEdge R725 

Vendor Dell EMC 

CPU Model AMD EPYC 7551 

Cores per CPU 32 

CPUs per Node 2 

Memory per Node 512 GB of DDR4 RAM 

Storage per Node 240 GB SATA SSD 

Interconnect Mellanox Infiniband EDR 

Operating System Ubuntu 18.04 LTS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Cluster specifications. 

Dependency Version 

SCons 2.2.0 

HDF5 1.8.11 

NetCDF 4.4.1.1 

LIBXSMM 1.9 

Metis 5.1.0 

ParMetis 4.0.3 
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process that is well-suited to massively-parallel implementations.

Uphoff et al. [1] detail several optimization strategies used in their

implementation and achieve an overall speed-up of 13.6x over the

base version. 

Uphoff et al. [1] implement a clustered local time stepping (LTS)

scheme for both wave propagation and dynamic rupture elements,

sacrificing theoretical single-node performance for scalability and

performance on supercomputers. Without LTS, the costliest ele-

ment bounds the performance of other elements, since they all

share a global time step; LTS ensures that elements only share

time steps with nearby or adjacent elements. They also target in-

creased per-node performance by optimizing matrix multiplication

kernels in both the wave-propagation and dynamic rupture mod-

els, decomposing large matrices into products of smaller ones to

reduce the total number of operations and reduce cache evictions.

This optimization also reduced the size of intermediate values, re-

ducing the overall space complexity as a side effect. The Shaking

Corals version of SeisSol achieves a significant single-node perfor-

mance increase relative to the base version and scales well across

many nodes. 

In order to evaluate the performance of this application, we

utilize a 4-node cluster with specifications provided in Table 1 .

Each node contains a Dell EMC PowerEdge R725 equipped with

two 32-core AMD EPYC 7551 processors, 512GB DDR4 RAM, and

a 240 GB SATA SSD. Each AMD EPYC 7551 processor has 2 MB of

L1I cache, 1MB of L1D cache, 16MB of L2 cache, and 64 MB of L3

cache. Compared to the Intel Xeon E5-2697 v3 used by Uphoff

et al. [1] , the AMD EPYC processors used have a much larger cache

size at all levels. While the large number of cores provided by

the AMD processors is advantageous, the platform choice also

increased the complexity of compiling the application, as the

original application targeted Intel-based platforms. A Mellanox

Infiniband EDR interconnect provides node-to-node connectivity,

allowing efficient MPI communication between nodes. Each node

in the cluster hosts a minimal installation of Ubuntu 18.04 LTS.

SeisSol was compiled and run within Docker containers, ensuring

a high degree of consistency in runtime environment. The Dock-

erfile used to build the container is available on GitHub 1 . In order

to run, the command docker build. was run in the same

directory as the Dockerfile. In the Dockerfile, the build process is

executed inside of the container. Once SeisSol is built inside of

the container, it runs interactively by using the command docker
run -v /host/directory/:/container/directory 
--network = ’’host’’ /bin/bash/ . From here, the gener-

ated binary runs across multiple nodes using mpiexec . 

3. Compilation and runtime environment 

As discussed in Section 2 , the cluster used to execute this

application is based on an AMD CPU platform with NVIDIA GPU
1 https://github.com/christopherbunn/SeisSol-SC18 . 

s  

i  

t  
ccelerators, but the application originally targeted Intel-based CPU

latforms and Intel-based Xeon Phi accelerators. This difference

ntroduced some potential challenges in terms of reproducibility,

s much of SeisSol is built upon Intel-specific libraries. SeisSol

as compiled using settings for Intel’s Haswell architecture on our

MD EPYC-based cluster. 

This reproducibility study focuses on the evaluation of the

haking Corals [3] release of SeisSol. In order to accurately repro-

uce the results report by Uphoff et al. [1] , the same libraries and

uild tools listed in the project documentation at the time of pub-

ication were used to compile on this system. The same version

f each library or tool listed in the SeisSol documentation [4] was

sed during compilation given in Table 2 . 

To compile SeisSol on our system, SCons 2.2.0 [5] was used to

anage the build process. Because Uphoff et al. [1] did not spec-

fy a specific version of the compiler to use, version 7.3.0 of g++

as used. As SeisSol employs the HDF5 format for checkpointing

nd writing results, HDF5 1.8.11 [6] was linked to SeisSol during

he build process. NetCDF 4.4.1.1 [7] was linked to initialize large

nstructured meshes. LIBXSMM 1.9 [8] was used to generate op-

imized assembly kernels for matrix-matrix multiplication. Finally,

etis 5.1.0 [9] and ParMetis 4.0.3 [10] were used to enable support

or the PUML mesh format across multiple nodes. 

An example of a reproducibility challenge was the use of the

IBXSMM library [8] to perform a majority of the small matrix

ultiplications in the application. LIBXSMM is described as an

ntel-specific library [8] , whereas our cluster had only AMD CPUs.

owever, LIBXSMM utilizes common SIMD extenetsions (e.g., AVX2

upport) which are common on both the AMD EPYC and Intel

aswell architectures. Given this commonality between the two in-

truction set architectures (ISA), the generated executable was able

o take advantage of the hardware-based SIMD support for AVX

ector operations that were previously only available on the In-

el ISA. While OpenBLAS [11] performed better on our platform,

IBXSMM was used to more closely match the runtime environ-

ent used in the original paper. 

We did not evaluate the scalability of the KNL implementation

s part of this reproducibility exercise. Much of the optimizations

or the Intel Xeon Phi Knight’s Landing (KNL) implementation of

eisSol is specific to Intel hardware and software. This would re-

uire substantial porting efforts of the existing KNL implementa-

ion to run on our competition cluster comprised of AMD CPUs and

VIDIA GPUs. 

. Shaking corals proxy performance 

Uphoff et al. [1] reported the single node performance of the

enerated flux kernels using a proxy program. This program gen-

rates a random initial dataset and uses the same kernels gener-

ted in SeisSol to measure performance. In this work the Shaking

orals version of the proxy is utilized to collect performance re-

ults. The Baseline version of this proxy program was not run dur-

ng the competition due to the limited time available to run all of

he programs. Instead, the proxy program for Shaking Corals was

https://github.com/christopherbunn/SeisSol-SC18
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Fig. 1. Shaking Corals proxy application performance across two trials and four dis- 

cretization orders (GFLOPS/node). 

Fig. 2. Shaking Corals proxy application performance comparison (Speedup). 
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Fig. 3. A Comparison of Local Time Stepping and Global Time Stepping Performance 

Using GFLOPs per Node. 
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un twice to observe variability across runs. Double precision is

sed, and the Haswell memory layout and flags are used. As the

xperimental setup does not include Xeon Phi accelerators, only

he CPU implementation is measured. 

An SCons build script was used to create multiple binaries

ith different discretization orders. A total of 4 separate bi-

aries were created with orders 4, 5, 6, and 7. Fig. 1 shows

he resulting performance per node for the 4 different orders

cross the two different runs of each binary. The command

/seissol_proxy 100000 100 all was used to run this ap-

lication, where ./seissol_proxy indicates the name of the

roxy binary, 10 0 0 0 0 refers to the number of elements in the test

esh, and 100 refers to the number of meshes. The results for dis-

retization order 4 show there was a large performance variability

etween runs. This is due to the additional time it takes to load

he data into the CPU caches on the first run, as well as the over-

ead associated with initializing related libraries. 

Fig. 2 shows the speedup at each order, using the performance

f Order 4 as a baseline. Similar to the results obtained by Uphoff

t al. [1] , there is a slight drop off in GFLOPS observed between or-

ers 6 and 7. On our cluster, the results obtained show that Order

 achieves the highest performance, with a speedup of 2.12 × as

ompared to the performance of Order 4. 

Order 6 seems to provide the best balance of workload

ize, which corresponds with the results observed by Uphoff

t al. [1] Our cluster was able to achieve higher performance in

erms of GFLOPS/node than the Haswell-based cluster used in the

riginal study, which is likely due to the higher core count and

igher clock speeds of our AMD EPYC-based cluster nodes. 
. Local vs. global time stepping 

In the Shaking Corals [3] release of SeisSol, local time step-

ing (LTS) is implemented for dynamic rupture to enable increased

erformance and scalability on multi-node clusters. Compared to

he previous global time stepping (GTS) implementation, local time

tepping allows for more efficient load balancing across nodes at

he expense of lower single-node performance. A smaller input

esh was used to obtain performance results for LTS and GTS. 

In our tests, we ran both local and global time stepping imple-

entations on 1, 2, and 4 nodes presented in Fig. 3 . Global time

tepping resulted in better performance than local time stepping,

ith the performance gains diminishing as the number of nodes

s increased. This result is consistent with the results observed by

phoff et al. [1] . In Fig. 3 , the performance drops off as the number

f nodes increases due to the increased amount of communication

verhead required to complete the simulation. The scaling proper-

ies of the application are much more apparent on a small number

f nodes due to the reduction in the size of the test dataset. The

xtrapolated run times for global time stepping decrease as more

odes are added, but the rate of decrease is reduced. The time-to-

olution is not compared in this reproducibility paper due to the

caled-down nature of the of the model used in the competition.

ecause the model is modified to be fully simulated within the

pan of the competition, directly comparing the time-to-solution

ould be inaccurate. 

In order to efficiently distribute the simulation workload across

ll available nodes, the PUMgen utility [12] is used to repartition

he mesh according to the number of nodes that are currently be-

ng tested. For example, when moving from a 4 node setup to a

 node setup, PUMGen produces an efficient set of mesh parti-

ions for each node. This helps balance workload effectively across

odes, resulting in linear speedup. 

. Geophysical results 

A typical SeisSol run produces three xdmf files, which can be

isualized using ParaView [13] . Due to unclear instructions in the

ocumentation and in Uphoff et al.’s paper [1] , the exact color

cheme used in the paper cannot be reproduced in Paraview. The

eige arrows coming from the surface represent the vertical dis-

lacement vectors calculated from the results. Green arrows are

sed to represent the horizontal displacement of the fault. The im-

ge shown in Figs. 4 and 5 represents 500 seconds of simulation

ime. 
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Fig. 4. Vertical Seafloor Displacement. The large magnitude of the arrows is similar 

to that obtained by Uphoff et al. [1] . 

Fig. 5. Horizontal Seafloor Displacement. The upward direction of the arrows is 

similar to that obtained by Uphoff et al. [1] . 
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Unfortunately, the simulation generated by the datasets pro-

vided at the competition was unstable. After approximately 40 sec-

onds, the simulation produces uninterpretable results. The move-

ment of the model is extremely unrealistic after this point and the

model view is obscured by incorrect data. This can be resolved by

changing the CFL parameter from 0.5 to 0.4. However, this issue

was identified after all of the simulation data had already been

collected. Because only a few hours remained in the competition

when this issue was discovered, it was infeasible to rerun the sim-

ulation with the new CFL parameter. While the output correctness

of SeisSol was impacted when using these faulty parameters, the

performance and timing data discussed in the previous section is

unaffected. The following interpretation is based off the first 40

seconds of this simulation. 

Based on the results obtained during the first 40 seconds, it

appears that the seafloor is significantly displaced, both verti-

cally and horizontally. In comparison with the results presented

by Uphoff et al. [1] , the plates on both sides of the fault are

shifted up vertically, as well as shifted towards the right hori-

zontally. These shifts are likely due to the dataset resolution, so
t is not possible to display the faults in this simulation. How-

ver, the direction of the generated vectors show the presence of

ultiple faults. Because of the instability exhibited by the sim-

lation due to parameters specified during the competition, the

ccuracy of the results produced is in question. As such, we are

ot able to comment on the reproducibility of accurate simulation

utput. 

. Conclusion 

In this paper we reported on our effort to reproduce prior work

y Uphoff et al. [1] performing earthquake simulation. Our results

how that the performance on a single node and the scalability of

ulti-node implementations using local and global time stepping

re all reproducible. The general scaling properties of the applica-

ion are consistent, with additional nodes reducing the runtime of

he application and decreasing overall GFLOPs per node. However,

ecause of the instability found in the simulation, the geophysical

esults obtained are inconclusive. This can be resolved by changing

he CFL parameter to a lower value. 

Even though the original implementation did not target an

MD-based platform, the CPU performance results still remain

ompetitive and the LIBXSMM library was compatible with our

ystem. The single node performance, as well as the scaling rate

cross multiple nodes shown by Uphoff et al. [1] , are reproducible.

n addition, the limited geophysical results collected during the

ompetition also generally align with those seen in the prior work.

he results suggest that the performance of the CPU-based version

f SeisSol is reproducible on an AMD-based cluster. 
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