RESEARCH, INNOVATION AND SCHOLARSHIP EXPO Abstract ID# 2078

Kaustubh Shivdikar, Julian Gutierrez, Nicholas Velcea, Samuel Smucny, Morgan Rosenkranz, David Kaeli

Opportunity Abstract

- Distribution of integer prime numbers remains a mystery till date.
- There has been no mathematical equation derived that explains which numbers will be prime.
- We leverage a novel approach to visualize prime numbers using overlapping hexagons that can bound all prime numbers.

Background

- In our previous work [1], we worked with a single node implementation for primes calculation with single thread.
- Our current library is capable of running over 32 GPUs per node with 4000 cores each.

- Calculating Primes is a compute intensive process with very less scope of parallelization.
- We aim to reduce the time required to compute large primes and aim to do this using least resources (in terms of memory as well as computation) as possible.
- We achieve this by dissecting the workload and carrying out speculative coloring of primes.

Results

- The data below shows colors in the prime hexagon for powers of 2, 3 and truncated powers of π .
- Powers of two and three exhibit some patterns by having pairs of colors intermittently.
- A unique property observed in powers of π was that no color occurred twice consecutively.
- This has less than 1/400 chance of occurring randomly.

2	and its powers				Powers of 3	
	a(n)	Spin	Polarity	n	Number	Spin
1	2	Blue	>>>>	1	3	Blue
2	4	Blue	>>>>	2	9	Red
3	8	Red	>>>>	3	27	Purple
4	16	Green	>>>>	4	81	Red
5	32	Cyan	<<<<	5	243	Cyan
6	64	Green	>>>>	6	729	Yellow
7	128	Purple	<<<<	7	2187	Purple
8	256	Green	>>>>	8	6561	Purple
9	512	Cyan	<<<<	9	19683	Cyan
10	1024	Red	>>>>	10	59049	Blue
11	2048	Purple	<<<<<	11	177147	Yellow
12	4096	Blue	>>>>	12	531441	Green
13	8192	Green	>>>>	13	1594323	Purple
14	16384	Green	>>>>	14	4782969	Yellow
15	32768	Blue	>>>>	15	14348907	Green
16	65536	Green	>>>>	16	43046721	Cyan
17	131072	Yellow	<<<<	17	129140163	Cyan
18	262144	Green	>>>>	18	387420489	Blue
19	524288	Red	>>>>	19	1162261467	Red
20	1048576	Cvan	<<<<	20	3486784401	Blue
21	2097152	Cyan	<<<<<	21	10460353203	Cyan
22	4194304	Purple	<<<<	22	31381059609	Red
23	8388608	Purple	<<<<	23	94143178827	Red
24	16777216	Yellow	<<<<	24	282429536481	Yellow
25	33554432	Purple	<<<<	25	847288609443	Red
26	67108864	Purple	<<<<	26	2541865828329	Blue
27	134217728	Yellow	<<<<	27	7,625,597,484,987	Green
28	268/35/56	Cyan		28	22,876,792,454,961	Green

Graduate RISE 212 B Category: Computer and Information Sciences Degree Seeking: MS in Electrical and Computer Engineering Northeastern University

The Prime Hexagon

- The use of our cluster meant we could parallelize the processes of both calculating prime numbers and coloring them to be stored in our database. • We used four NVIDIA V100 GPUs and four AMD EPYC
- 7551 CPUs and four MI 25s, totaling over 20,480 CUDA cores and 512 CPU cores, achieving a 9X speedup versus serial computation.

	n	Truncated Powers of Pi	Spin	Polarity
	2	3	Blue	>>>>>
	3	9	Red	>>>>>
	4	31	Cyan	<<<<<
Polarity	5	97	Purple	<<<<<
>>>>	6	306	Red	>>>>>
>>>>	7	961	Green	>>>>>
<<<<<	8	3,020	Cyan	<<<<<
>>>>	9	9,488	Purple	<<<<<
	10	29,809	Yellow	<<<<<
	11	93,648	Green	>>>>>
	12	294,204	Purple	<<<<<
<<<<<	13	924,269	Red	>>>>>>
<<<<<	14	2,903,677	Blue	>>>>>
<<<<<	15	9,122,171	Purple	<<<<<
>>>>	10	28,058,145	Ked	~~~~~
<<<<<	17	90,052,220	Ped	
>>>>	10	202,044,303	Cyan	
<<<<<	20	2 791 563 949	Vellow	
~~~~	20	8 769 956 796	Red	>>>>>>
>>>>	21	27.551.631.842	Yellow	<<<<<
	23	86.556.004.191	Cvan	<<<<<
	24	271,923,706,893	Yellow	<<<<<
<<<<<	25	854,273,519,913	Purple	<<<<<
>>>>	26	2,683,779,414,317	Red	>>>>>
>>>>	27	8,431,341,691,876	Purple	<<<<<
>>>>	28	26,487,841,119,103	Green	>>>>>
<<<<<	29	83,214,007,069,229	Blue	>>>>>
>>>>	30	261,424,513,284,460	Green	>>>>>
>>>>	31	821,289,330,402,749	Cyan	<<<<<
<<<<<	32	2,580,156,526,864,958	Yellow	<<<<<
>>>>	33	8,105,800,789,910,709	Green	>>>>>
	34	25,465,124,213,045,828	Blue	>>>>>
	35	80,001,047,150,456,339		
>>>>	36	251,330,702,007,364,298		
>>>>				



# Approach Method

A Prime Hexagon is formed when integers are sequentially added to a field of tessellating equilateral triangles.

• The path of the integers is changed whenever a prime number is encountered.

Since prime numbers are never multiples of two or three, all numbers from "2" to infinity are confined within a 24-cell hexagon. Each of these six hexagons is color coded to help understand the patterns when mapped to numbers.

#### Implementation

• Workload is dissected into smaller batches of 10⁹ numbers by master node.

• CUDA based program is distributed across multiple GPU nodes, these sieve for primes and write relative location values for every

 $10^{9^{tn}}$  number to a 100-line file.

• Speculated position is converted to actual position by shifting all numbers of that batch.

## Impact

• If we write the remainder after dividing every number by 6, every triangle will have the same remainder for all numbers, as seen in the figure (right).

• This we employ for gaining speedup in calculations by not calculating prime numbers in specific triangles.







- associated Hex color.

- technologies.

# References and Acknowledgements

[1] This research was possible owing to the support provided by mathematician Tad Gallion and his work on prime numbers. [2] "Visualizing and Predicting Prime Numbers", infosthetics.com, December 2009. [3] "Primal Chaos, (Visualizations)", Carlos Paris, sievesofchaos.com.

We are building a database of large Prime Numbers with their

Such a database of large prime numbers when made available to everyone, will allow other researchers to expand on their work. • Many modern encryption algorithms depend on the factorization of very large primes which are hard to find.

Recognizing patterns in Prime numbers will affect such encryption