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Abstract—General matrix multiplication (GEMM) libraries
on x86 architectures have recently adopted Just-in-time (JIT)
based optimizations to dramatically reduce the execution time of
small and medium-sized matrix multiplication. The exploitation
of the latest CPU architectural extensions, such as the AVX2
and AVX-512 extensions, are the target for these optimizations.
Although JIT compilers can provide impressive speedups to
GEMM libraries, they expose a new attack surface through
the built-in JIT code caches. These software-based caches allow
an adversary to extract sensitive information through carefully
designed timing attacks. The attack surface of such libraries has
become more prominent due to their widespread integration into
popular Machine Learning (ML) frameworks such as PyTorch
and Tensorflow.

In our paper, we present a novel attack strategy for JIT-
compiled GEMM libraries called JAXED. We demonstrate how
an adversary can exploit the GEMM library’s vulnerable state
management to extract confidential CNN model hyperparame-
ters. We show that using JAXED, one can successfully extract
the hyperparameters of models with fully-connected layers with
an average accuracy of 92%. Further, we demonstrate our attack
against the final fully connected layer of 10 popular DNN models.
Finally, we perform an end-to-end attack on MobileNetV2, on
both the convolution and FC layers, successfully extracting model
hyperparameters.

Index Terms—JIT, Compilers, GEMM library, Software
Cache, Security, Machine Learning, Timing Attack, JAXED

I. INTRODUCTION

With recent advances in deep learning, many businesses

have adopted or integrated deep learning into their core tech-

nology stack [1]. Although the performance of Deep Neural

Networks (DNNs) has created new business opportunities, the

cost of designing and training a high-performance DNN model

remains an expensive process. The main reason is due to the

highly specialized knowledge required on DNN architectures,

and also the challenges faced when building large data sets

that are representative of real-world scenarios. Increasingly,

companies treat their deep learning model hyperparameters as

prized possessions, given that minor improvements provide a

competitive edge over their competition. Thus, it has become

increasingly important to protect this valuable intellectual

property.

DNN architectures are powered by convolution operations,

which are performed using highly-optimized General Matrix

Multiply (GEMM) libraries. For many DNN architectures,

it has been reported that traditional BLAS libraries provide

limited benefits when performing small and medium-sized

matrix multiplications, as BLAS is optimized to utilized to

leverage the memory hierarchy effectively, rather than max-

imize compute resource usage [2], [3]. Recently, there has

been a growing trend towards optimizing GEMM performance

through run-time optimizations [4]. Traditionally, JIT-based

compilation has been used for interpreted languages such

as Python and Java, though similar optimizations are being

incorporated into libraries written in compile-time languages

such as C/C++. Run-time optimizations can be more aggres-

sive than compile-time optimizations due to the availability

of problem dimensions at run-time. Hence, a JIT compiler

can improve the performance of small and medium-sized

matrix multiplication kernels by orders of magnitude [2],

[4]. The latest generation of GEMM libraries with runtime

code generation build an internal software code cache to

allow faster execution of GEMM kernels [2]–[5]. The runtime

library manages these caches, relieving the user from explicitly

managing them, making them transparent to the user. This

code cache is a vital aspect of JIT optimizations, as they

allow the dynamic optimization system to amortize the cost of

run-time code generation over many iterations. For machine

learning (ML) frameworks, where hyperparameters remain

constant for a period (until they are eventually updated), a

significant speedup can be obtained by amortizing the code

generation cost [3], [4].
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Fig. 1: The victim’s DNN execution calls the GEMM library,

passing model hyperparameters, which invokes the JIT process

(step 1). Thus, subsequent calls by the attacker use the cached

instructions, resulting in faster execution (step 2).

However, internal code caches introduce a new attack sur-

face that has never before been exploited, mainly because
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JIT-based optimization of DNN libraries is a fairly recent

development. Due to the JIT code generation process, the

execution of a benign user application can leave behind a trace

of instructions that can be exploited later by an attacker to

extract problem dimensions, as shown in Fig 1.

Our attack, JAXED (Just-In-Time Axed), is the first end-to-

end demonstration of a JIT attack, demonstrating a complete

hyperparameter extraction in the context of DNNs. One of the

main goals of our work is to raise awareness of the potential

vulnerabilities due to just-in-time (JIT)-optimized libraries,

attack surfaces that may go unnoticed by developers. This

class of attack has real-world implications, especially given the

widespread use of open-source machine learning frameworks

and JIT-optimized GEMM libraries.

Consider a scenario where a software vendor provides a

face detection API service as a machine learning service to its

users. Assume a user (victim) is performing speech inference

using a DNN model, and another user (adversary) performs

object detection through a separate DNN model.

The DNN models are not visible to each other; However,

with such a configuration, when running DNN inference,

the victim’s model will make a GEMM call through the

underlying ML framework (e.g., PyTorch or Tensorflow).

This call would trigger JIT code generation for the speci-

fied model hyperparameters. In the context of GEMM, these

model hyperparameters will map to dimensions M , N and

K, which represent the number of rows of matrix A, the

number of columns of matrix B and the number of columns

of matrix A, respectively, in standard GEMM notation. The

resulting instruction sequence will then be cached to provide

faster servicing during future GEMM calls, using the same

values for the (M , N , K) parameters. Thus, an adversary’s

model using the same (M , N , K) parameters would also

observe faster execution, as shown in Fig 1 (step 2).

By combining the knowledge of ML model characteristics

and timing measurements, an adversary can now reduce the

search space for discovering the model hyperparameters. Thus,

adversaries are able to steal valuable intellectual property

associated with the ML model without any detectable privilege

escalation nor tampering.

In our work, we consider scenarios where a legitimate

user can act as a malicious adversary, performing a timing

side-channel attack on the victim’s model. We demonstrate

an end-to-end strategy, showing how an attack is performed,

and provide an example attack using PyTorch [6] and Intel’s

extension for PyTorch [7]. Our goal is to increase awareness

among both library developers and DNN users about this new

class of attack surface. We also consider potential mitigation

strategies.

Our contributions in this paper include:

• We demonstrate a JAXED (Just-In-Time Axed) attack

strategy by providing an example attack against fully

connected layers and convolution layers using PyTorch

and Intel’s extension for PyTorch.

• We show that our attack works against the fully connected

layers of 10 widely adopted DNN architectures used in

production environments. We also show a complete attack

against MobileNetV2.

• We discuss mitigation strategies from both the library

developer’s perspective as well as the DNN user’s per-

spective.

II. ATTACK SCENARIOS

A. An Example Attack Scenario on ML Inference

In today’s markets, we see companies specializing in provid-

ing machine learning as a service (MLaaS), delivered either

through a platform or as a software package. Such services

require off-the-shelf ML frameworks as the development effort

required to build a customized ML framework is a significant

undertaking. Therefore, most vendors rely on open-source ML

frameworks and build their own frameworks on top of existing

solutions. Our focus here assumes an ML vendor that provides

an API for DNN inference. For the sake of discussion, let us

assume that the underlying ML model is a DNN.

”Best DNN” is a private cloud ML vendor that provides

an ML inference API service for users. ”SNAPAPP” is a

mobile application company that leverages the face detection

API service to generate decorative artwork (e.g., image filters)

on end-user mobile images. ”TikTikAPP”, a competitor of

SNAPAPP, is a mobile application company, where users

access this ML inference service to render colorful filters.

In this case, SNAPAPP (the adversary) does not have

access to the underlying DNN model of TikTikAPP (the

victim). However, since the underlying framework is shared,

SNAPAPP can expose a timing side channel through JIT-

optimized GEMM libraries. The information leakage is due to

the internal software cache of JIT-optimized GEMM libraries,

as we will see in the next sections.

The above approach can be deployed via two possible

privilege scenarios: i) API access (read privilege) or ii) private

cloud access (read + write privilege):

API access: SNAPAPP only has access to the API endpoint

and waits until the victim sends an API request to the

corresponding endpoint. In the case where DNN primitives

(operations) are shared between the two models, SNAPAPP

would observe a significant reduction in execution times. Thus,

using our JAXED attack strategy, the adversary can exploit the

existence of a side channel vulnerability and narrow down the

search space of shared primitives.

Private cloud access: Although previous work [8]–[10] has

demonstrated that co-location vulnerabilities can be exploited

in the public cloud, modern infrastructure has been made more

secure and co-location on a public cloud environment has

become almost impossible. However, due to the fast pace in the

ML domain, there is a higher probability of such co-location

vulnerabilities being present in a private cloud environment.

In such a private cloud environment, assume a server such

as Torchserve [11] or Multi Model Server [12] is hosting SNA-

PAPP and TikTikAPP’s models. SNAPAPP will not have direct

visibility into TikTikAPP’s model execution due to restricted

permissions. However, since the ML framework is shared

within the same process, the underlying library code cache

190

Authorized licensed use limited to: Northeastern University. Downloaded on August 20,2022 at 01:58:10 UTC from IEEE Xplore.  Restrictions apply. 



timing side channel can be exploitable by SNAPAPP. In this

scenario, the adversary is able to extract the hyperparameters

through DNN design space exploration by modifying her own

model and monitoring the execution time.

Compared to prior works on JIT-based attacks [13], our at-

tack is extremely practical since we do not rely on fine-grained

control. Nor do we assume observability over the victim’s

model execution, but rather rely on observing the adversary’s

own execution. Having introduced the attack scenarios, next,

we formally present our threat model.

B. Threat Model

We develop a timing attack that employs JIT-induced cache

timing side-channels to reduce the search space and narrow

down candidate guesses for DNN hyperparameters.

Black-box Access - We employ a black-box threat

model [14], [15]. The victim’s DNN model hyperparameters

and weights are not visible to the adversary and cannot be

extracted due to in-built security mechanisms. The adversary

also does not have the luxury of any observability over the

victim’s execution and can only measure her own actions.

Shared Platform - We assume that the underlying ML

framework (and accompanying GEMM library) is shared

between the victim’s DNN model and the adversary’s DNN

model within the same process space. In the context of

JIT security attacks against JVMs, Brennan et al. [13]

demonstrated that this is feasible, as shared services are

provided through the cloud.

Timing Information - The attacker should be able to gain

fine-grained timing details for her own DNN model. The layer-

wise information will enable the attacker to map candidate

guesses to the victim’s execution easily. Our attack does not

assume any observability over the timing of the victim.

III. JIT-OPTIMIZED GEMM

This section will look at the fundamentals behind JIT-

optimized GEMM libraries and how they potentially expose a

new attack surface.

A. Software Architecture

For small and medium-sized matrix multiplications, tradi-

tional libraries do not deliver the best possible performance.

The reason is that well-known and established BLAS libraries,

such as Intel MKL [16] and OpenBLAS [17], are tuned for

large problem sizes. Traditional GEMM libraries tune memory

accesses to best leverage the available memory hierarchy.

LIBXSMM [2] is a GEMM library designed to address this

problem, providing runtime code generation. The availability

of new CPU instruction set extensions, such as AVX-2 and

AVX-512, have paved the way towards more aggressive op-

timizations. However, at compile-time, the runtime problem

dimensions are typically unavailable since the GEMM library

is often dynamically linked during program execution. When

using run-time code generation, aggressive optimizations that

depend on problem dimensions can be performed. We will

analyze the architecture of this library, as it is open-source, and

will help us understand the internals of JIT-optimized GEMM

libraries. A simplified view of the software architecture of

LIBXSMM is shown in Fig. 2.

Application

GEMM

Code Cache

Receive / CallCheck  Threshold

yes

Fallback (BLAS)
Backend for JIT Code

(Driver program, prints C code with inline assembly)

no BLAS Compatible API for
 C/C++ and Fortran

Generate / Store

(MNK)1⁄3 <= 80

Fig. 2: Software architecture of the LIBXSMM library.

The application invokes the LIBXSMM library through

the GEMM API. For example, if the application works with

single-precision data stored in matrices floating-point numbers,

the call would be SGEMM (compatible with the standard

BLAS API). The library would first check M , N , and K
values and evaluate whether M ×N ×K ≤ 80. According

to the developers of LIBXSMM [2], this threshold has been

chosen based on the L2-cache size, ensuring that the matrices

will fit nicely in the memory hierarchy. The threshold plays

an important role, as it determines which GEMM library is

used for the computation.

• If the threshold is met, LIBXSMM checks for the avail-

ability of optimized code in the code cache. If the

optimized code is not available in the code cache, it will

trigger the backend to run code generation. LIBXMM

maintains a code registry and a small code cache to hold

the most recently used GEMM kernels.

• If the threshold is not met, the library invokes a tradi-

tional BLAS library such as MKL BLAS or OpenBLAS

because the library determines that BLAS would perform

faster than LIBXSMM.

B. Comparison Between Existing JIT GEMM Libraries

In terms of the scale of this attack surface, is this present

in all ML model execution? The Intel MKL library provides

a JIT-optimized GEMM method for small and medium-sized

matrix multiplications [4]. Intel’s OneDNN [5] also provides

a JIT-optimized GEMM method for ML applications. Both of

these libraries provide two methods for integration: 1) using a

conventional BLAS API and 2) using a customized JIT API.

When using a conventional API, code cache management is

handled by the library, whereas with the customized JIT API,

the user is responsible for code cache creation and destruction.

Similarly, LIBXSMM provides a conventional BLAS API,

which allows the user to fully utilize the library without

requiring extensive modifications to the original C/C++ appli-

cation. The built-in software code cache removes the burden
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of explicit memory management in the application from the

user. Therefore, all GEMM calls to the extension are directed

through a shared code cache (in LIBXSMM) or a shared JIT

engine (in oneDNN).

C. JIT Code Cache Timing Behavior

For an attack to be successful, there should be a notice-

able difference in the execution time between different input

parameter settings. We perform an investigation, establishing

the viability of our attack in the context of LIBXSMM,

and compare against a traditional BLAS library [17]. Fig. 3

shows the execution time when only the adversary is executed

(hereafter referred to as an ”isolated run”), and when the

victim would have executed before the adversary’s execution

with the same parameters as the victim (referred to as a ”shared

run [similar params].” We will use the terminology ”shared

run” when the adversary executes after the victim execution

(irrespective of parameters). In a shared environment, the JIT

GEMM library will result in a faster execution time when

run with similar parameters. However, in the absence of JIT

optimizations, we would not observe this phenomenon.

Fig. 3: LIBXSMM (with JIT) vs. OpenBLAS (without JIT).

In a shared environment (with similar parameters), JIT opti-

mizations will be performed, resulting in faster execution due

to JIT-optimized GEMM.

Next, to evaluate the viability of our attack, we run an exper-

iment with the LIBXSMM library, where the attacker attempts

to execute a matrix multiplications of different dimensions in

a shared environment. Our goal is to distinguish the difference

in execution time when the adversary’s parameters are the

same as the victim’s (code cache hit timing), versus when

the parameters are different from the victim (code cache miss

timing). The difference between the two is the time required

by the JIT library to compile code and store it in cache (code

cache miss penalty).

In Fig. 4, we observe the aforementioned difference (from

the attacker’s perspective) between the execution times of the

different sized matrix multiplications, where M = N = K in

standard GEMM notation. We test each matrix configuration

1000 times and present the average execution times. The

attacker experiences a significant difference in execution time

in a shared environment where the parameters (i.e., when

M , N , K) are the same as the victim’s parameters. Fig. 4

shows the difference in execution time of the attacker when

parameters are the same as the victim (a code cache hit) and

when parameters are different (a code cache miss).

In the next sections, we will describe how the behavior of

JIT-code generation, combined with the internal software code

Fig. 4: Code cache timing attack: Bar plot showing the average

difference in execution time between a code cache miss and

a code cache hit.

cache, can be exploited to reveal sensitive model hyperparam-

eters.

IV. JAXED ATTACK STRATEGY

We will first explain how an adversary would perform a

timing side-channel attack with the knowledge of the ML

framework and the underlying JIT-optimized GEMM library

to extract model hyperparameters.

A. Attack Strategy

We provide a general description of the attack to help

conceptualize the attacker’s strategy. The adversary first needs

to understand the targeted system’s behavior in the absence of

JIT-optimized kernels. Thus, she first selects a set of educated

guesses. For example, the attacker can select a candidate set

containing powers-of-two, as these are frequent choices in

popular DNN designs [18]–[26]. For each candidate guess, the

attacker profiles the execution time on her system (referred to

as an isolated run). Next, the adversary waits for the execution

of the victim’s ML model so that the corresponding JIT code

cache will be filled in the library. Finally, the attacker runs

her model with the predicted parameters and observes the

execution runtime (referred to as an observed run). Having

obtained the isolated vs. observed runtimes over many itera-

tions, the attacker computes a score. The score is computed

by determining how much faster each observed runtime is

compared to the isolated runtime, as shown in Eq. 1. The

candidate hyperparameters corresponding to the highest score

(i.e., largest difference) should identify the victim model’s

hyperparameters. In a JAXED (Just-In-Time Axed) attack, the

adversary relies solely on observations of her own behavior

and not the victim’s behavior, which may be impossible in

some circumstances.

score =
difference in execution time

isolated runtime
% (1)

B. A Successful JAXED Attack

Having presented an overview of the attack steps, we will

discuss why our attack strategy works. First, the adversary

waits for the victim’s model execution. We will see the

execution steps involved and the artifacts left behind as a result

of the execution.
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As seen in Fig. 5, when executing the vendor’s ML inference

library, in step 1, the binary is loaded. The weights of the DNN

are subsequently loaded in step 2. As the execution proceeds,

when the ML model computes a convolution layer or a fully

connected layer, the underlying GEMM driver will be invoked

in step 3. The functionality of the GEMM API is encapsulated

within the PyTorch framework.

VICTIM’s

ML Model

ML Inference Library

(BINARIES)

Weights GEMM 

DRIVER

JIT GEMM Library API

Code Cache

Backend for JIT code

(driver program which prints C code with inline assembly) 

Adversary’s ML Model

GEMM 

DRIVER

ATtACKER’s

ML Model

Weights

1

2 3

4

5

6

cb

d

e

a

Fig. 5: Attack Surface: After the victim’s execution, the victim

leaves behind information about its model hyperparameters

in the JIT code cache. The attacker probes this JIT code

cache through the attacker’s ML model and observes timing

information to determine the victim’s model hyperparameters.

In this case, we will assume that the PyTorch framework has

been configured to use the LIBXSMM library. The GEMM

API would be called in step 4, resulting in a code cache

lookup in step 5. If the code cache does not contain the GEMM

kernel (i.e., a cache miss), the back-end is invoked, and the

code generation is performed in step 6. The victim’s model

execution will leave behind an execution trace through the

JIT-optimized code stored in the cache. The attacker can now

investigate the timing behavior to identify the secret model

hyperparameters.

In step a (shown in the attacker’s ML model in Fig. 5),

the attacker builds a hypothesized model. For example, if

the attacker is trying to guess the parameters of a fully

connected layer, the attacker will develop a similar model

with a configurable layer size. The attacker would then use

random weights in step c and rely on the GEMM driver in

step b to perform inference. The GEMM call will be directed

to the JIT library. In this scenario, if the attacker guesses the

same model hyperparameters as the victim, the call will be

serviced through the code cache in step e (i.e., a code cache

hit). Therefore, the attacker will observe a decrease in the

expected execution time for the correct parameter guess, as

the back-end for JIT code generation will not be triggered. By

measuring the difference in execution time, the attacker will

be able to verify her hypothesis.

V. EXPERIMENTAL METHODOLOGY

Next, we discuss the relationship between the GEMM calls

and the model hyper-parameters. Based on the specific layer

type, we found that using different guessing mechanisms was

warranted. We will first discuss the parameters of each layer

and how an educated guess could help reduce the candidate

set space.
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(a) Fully-connected layer inference computation.
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(b) Convolution layer inference computation.

Fig. 6: Fully-connected layer and convolution layer compu-

tations. Each computation can be formulated as a matrix

multiplication, performed using a GEMM library.

A. Parameters for the Fully Connected Layers

FC layers have two parameters: 1) the input channels and 2)

the number of neurons (also referred to as output channels).

The activation input to an FC layer is flattened into a one-

dimensional structure. Thus, the size of the input would be

equal to 1 × input channels. As shown in Fig. 6a, this would

result in a multiplication between the flattened input and the

FC layer weights, which can be thought of as a matrix with

the dimensions input channels × output channels.

B. Parameters for the Convolution Layers

A convolution layer has eight parameters: 1) the input

height, 2) the input width, 3) the input channels, 4) the number

of filters (also referred to as output channels), 5) the kernel

height, 6) the kernel width, 7) the padding and 8) the stride.

A convolution layer first transforms the activation input into

a column format using a technique widely known as im2col.
This is done in order to use optimized BLAS methods provided

by widely available GEMM libraries. In a 2D convolution, the

output size of the 2D input can be computed as follows.

out dim =
(input dim− kernel dim + 2× padding)

stride
(2)
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Having computed the output size, the im2col is performed.

A single channel is transformed, such that the multiplication

of the activation matrix (input) with the filter weights matrix

(layer) results in the convolution output. If there are multiple

input channels, the same operation is performed for each

activation.

C. Attacking FC Layers

Conv2DInput Linear OutputConv2D

Fig. 7: Deep Neural Network diagram. Final layer is often a

Linear (FC) layer in order to map to a probability vector.

Let us assume the attacker is attempting to detect the

parameters for the FC layers in the DNN model shown in

Fig. 7. Most DNN’s (in the context of image classification)

employ an FC layer at the very end of the model, mapping

the DNN result to a probability vector, selecting the most

probable object class and object boundaries. Thus, the easiest

way to begin an attack would be to target the final FC layer.

Since the output vector specifications are provided to the

user (”SNAPAPP”) by the ML vendor (”Best DNN”), one of

the hyperparameters (i.e., the number of neurons) for the FC

layer is already known. Therefore, the adversary only needs to

perform a linear sweep to identify the other hyperparameter

(number of input channels). We detail the FC layer attack

algorithm in 1.

Algorithm 1 FC Layer Attack Algorithm.

Input: c - out dimension

Output: input channels (i)
1: I = {input channel candidate set}
2: for i ∈ I do
3: record the run-time for (c, i) � Profiling step

4: Run the victim model � Inference Step

5: for i ∈ I do
6: record the run-time for (c, i) � Attack step

7: compute the time difference ∀ (i) ∈ I

8: sort and find the maximum time difference

9: return corresponding (i)

D. Attacking Convolution Layers

For the convolution layers, the guess involves simultaneous

parameter guesses due to the complexity of this layer. Assume

that the attacker has successfully identified the number of input

channels for the FC layer, as shown in Fig. 7. This means

that the flattened output of the previous convolution layer is

known by the attacker (because the output of the convolution

layer becomes the input to the FC layer). The adversary first

decides the range of kernel sizes, which will be between 1×1,

3×3, 5×5. Almost all modern DNNs limit themselves to these

kernel sizes, given the high computational overhead with large

kernel sizes in convolution layers [19]. Next, the adversary

guesses the input stride and the padding size. The stride value

is limited to either 1 or 2. Because as the stride size increases,

most of the layer input is discarded. The padding value is

dependent upon the kernel size and the decision of whether to

use padding. Most DNN’s use padding to avoid the destruction

of boundary pixel information in images.

Having established guesses for these parameters, the adver-

sary builds a candidate guess set, consisting of the number

of input channels and the number of filter combinations. The

attacker then iterates through the combinations to identify

the correct combination. We have observed that when using

an incorrect kernel size, incorrect stride value, and incorrect

padding assumptions, the success rate of the attack drops

below 10%. This provides a good indication that the adversary

needs to revise the initial assumptions and re-attempt the at-

tack. In the general case (if initial assumptions on kernel sizes

and layers are observed to be contradictory), the adversary

must increase the search space to include more unconventional

DNN designs.

Since the attacker already knows the flattened output shape,

the attacker can devise an algorithm to map hyper-parameters.

Usually, images used for inference are square in shape, So the

out height×out width can be considered as the out dim2. By

figuring out the perfect squares (i.e., n ∈ N, such that ∃ i ∈ N,

n = i2) that are less than the output shape size, the adversary

can build a set of all possible candidate guesses for out dim2.

But the attacker is more interested in the number of filters in

the layer. Thus, the attacker converts the set of guesses built

for the output dimension into guesses to find out the number

of filters. This can be done by dividing the output shape by

the guesses for the output dimension and choosing the result

only if the remainder is zero. We summarize our algorithm for

a successful convolution attack in Algorithm 2.

Algorithm 2 Convolution Layer Attack Algorithm.

Input: m - FC input dimension (or flattened input dimension

of the subsequent layer)

Output: input channels (i), number of filters (c)
1: I = {input channel candidate set}
2: S = {s | perfect squares ≤ m, s ∈ N}
3: C = { c = m

s | m is divisible by s ∈ S} � Compute

candidate set for number of filters

4: for c ∈ C do
5: for i ∈ I do
6: record the run-time for (c, i) � Profiling step

7: Run the victim model � Inference Step

8: for c ∈ C do
9: for i ∈ I do

10: record the run-time for (c, i) � Attack step

11: compute the percentage time difference ∀ (c, i) ∈ C × I

12: sort and find the maximum time difference

13: return corresponding (c, i)
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E. Discovering DNN Network Architecture

The attacker will begin the attack from the last layer and

will proceed to detect subsequent layers. For each layer-wise

attack, the adversary will assume a layer type (e.g., FC layer

or convolution layer) and will verify the correctness of her

hypothesis through experimentation. We will show how this

technique can be used to recover the complete architecture of

a DNN.

VI. RESULTS

To demonstrate our attack, we use a system with an Intel(R)

Xeon(R) W-2295 CPU (hyper-threading enabled) with AVX-

512 extensions. The system is running Red Hat Enterprise

Linux release 8.4. We use the latest PyTorch version 1.7.0,

supported by Intel extensions for PyTorch [7]. To set up

PyTorch, we follow the help guide and make no modifications

to the PyTorch framework, nor to the Intel extensions library,

other than those specified in the help guide. We demonstrate

our examples using Python, and the same principles can be

extended to compile-time languages such as C++.

A. Qualitative Comparison Against Existing Attacks

We compare JAXED with a state-of-the-art JIT attack (JIT

Leaks [13]) and state-of-the-art DNN parameter extraction

attack in the context of GEMM (Cache Telepathy [14]).

TABLE I shows that JAXED is the only attack which is able

to perform a successful JIT-based DNN attack in the context

of JIT optimized GEMM libraries.

B. Attacking Fully Connected Layers

We will first look at attacks on fully connected layers as

they are easier to attack than the convolution layers. Consider

a toy victim model which has a final output vector of size 1 ×
200. Assume that the size of the victim’s input channels to the

last FC layer is 25, which is the secret hyperparameter being

targeted by the adversary. The adversary would iterate through

the candidate set and record the execution time difference, as

shown in Fig. 8. In order to identify the secret parameter, the

adversary would compute the score by using Equation 3. The

value corresponding to the largest time difference percentage-

wise would reveal the secret hyperparameter. Fig. 8 shows the

time possessing the largest difference for an input dimension

of 25. Thus, the adversary can figure out the secret hyperpa-

rameter quite easily.

Next, we will explore the prediction accuracy over a larger

search space. We select two boundaries for the output shape

size, 10 (representing CIFAR-10 [27]) and 1000 (representing

ImageNet [28] datasets). We select increments of 100 and

choose the secret parameter (number of input channels of

the FC layer) to be within [2, 210], since most CNNs opt to

have parameters as powers-of-two. Due to the variability in

execution times, we perform the experiment 100 times and

compute the success rate. Fig. 9 shows the mean success rate

over 100 iterations. Our analysis has revealed that the mean

accuracy rate is 92.3%, and the mean lies between [92.1%,

92.4%], with a confidence level of 95%.
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Fig. 8: Difference in execution times when the attacker exe-

cutes their own model in isolation and when their model is

executed after the victim (a higher value is better). When the

attacker observes the largest difference, this indicates that the

code cache contains the JIT generated code.
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Fig. 9: Mean success rate of different output shape and secret

parameter combinations. A rate of 1.00 indicates that our

algorithm was able to successfully determine the victim’s

secret parameter for all 100 experiments.

As seen in Fig. 9, our attack strategy seems to produce in-

consistent results when the victim’s secret parameter is ≥ 256

and the output shape is ≥ 400. We analyzed the relationship

between the success rate and the mean JIT code generation

time, computed as a fraction of the total execution time. In

Fig. 10, we can observe a clear relationship between the

proportion of time spent on code generation time and the rate

of success. The median mean JIT code generation time
mean execution time

of 0.22 repre-

sents the point were predictability diverges. For computations

below this value, the success rate is low (the group marked

with blue x’s in Fig. 10). However, for computations above

0.22, the success rate is very high (the group marked with

red o’s). When the JIT code generation time is only a small

portion of the total execution time, the timing characteristics

are no longer dominated by the code cache available within

the library and instead dominated by other factors, including
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TABLE I: Qualitative comparison between JAXED and existing attack strategies.

Criteria JIT Leaks [13] Cache Telepathy [14] JAXED

Targeted software JVM / Virtual Machine Intel MKL / OpenBLAS oneDNN
Context Runtime JIT optimizations

performed by JVM and virtual
machines on hot paths.

GEMM libraries (without JIT)
utilized by DNN frameworks.

GEMM libraries (with JIT) utilized by
DNN frameworks.

Side channel Timing side channel. Hardware cache side channel. Timing side channel + software cache
side channel.

Vulnerability Timing side channel attack on
optimized hot path execution.

Cache side channel attack on
GEMM instructions.

Timing and Software cache side
channel attack on runtime optimized

GEMM calls stored in the code cache.
Attack DNN frameworks? � � �

Dynamic instruction sequences? � � �
Open source? � � �

the cache hierarchy, operating system behavior, and PyTorch

framework characteristics. Therefore, the rate of success drops

when a lower percentage of the total time is spent in code

generation.
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Fig. 10: Outliers in Fig. 9; The points correspond to output

shape ≥ 400 and victim parameter ≥ 256.

C. Attacking Convolution Layers

As we did in the case with the FC layers, let us first consider

a toy example. Consider a victim model that has a convolution

layer followed by an FC layer. Assume that the attacker has

already discovered the secret parameter of the FC layer by

following the attack steps described earlier. Assume that the

convolution layer has a kernel size of 3 × 3, a stride equal to

1, and uses padding, such that the activation height and width

would remain constant.

With reference to our detailed convolution attacks in Sec-

tion V, the input dimension of the FC layer is already known

(which is the subsequent layer). Therefore, we can compute

the FC’s input dimension as follows:

FC input dimension = out dim2 × number of filters (3)

We can use this information and Algorithm 2 to deduce the

number of input channels and the number of filters. Fig. 11

shows a set of different input channels and number of filters

(output channel) combinations. We identify the largest differ-

ence in execution times to correctly identify the convolution

layer secret hyperparameter pair: the number of input channels

and the number of filters.
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Fig. 11: Convolution layer attacks require two simultaneous

guesses: the number of input channels and the number of filters

in a layer. The highest bar shows the correct prediction of the

victim’s number of input channels and number of filters.

D. DNN Evaluation

We first select 10 popular DNNs, all trained with the

CIFAR-10 dataset [27]. The reason for the dataset selection

is to ensure that the JIT GEMM library operates within its

specified range. For larger datasets and network architectures,

the JIT GEMM library backend would switch to MKL BLAS,

rendering the attack ineffective.
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Table II shows the success rate of our attack against

the last layer (fully connected) of ResNet-18, ResNet-34,

ResNet-50 [20], VGG16, VGG19 [19], MobileNetV2 [26],

DenseNet121, DenseNet169 [22], Inception v3 [23] and

GoogLeNet [24], all trained on CIFAR-10 [27]. To ensure that

our results are reproducible, we have used models available in

the open-source domain. As we can see, independent of the

model selected, our attack strategy achieves a success rate of

99%-100% across a range of popular DNNs.

Next, we attempt an attack on MobileNetV2 to discover

the complete network architecture. First, we review the archi-

tecture of MobileNetV2, provided in Table III. MobileNetV2

introduces the concept of a bottleneck, also referred to as

an inverse residual block [26]. A bottleneck layer consists

of a 1×1 convolution (a point-wise convolution), followed

by a 3×3 depth-wise convolution, and finally followed by

another 1×1 point-wise convolution depth-wise convolutions

are detected by the PyTorch framework when the number of

input channels is equal to the number of groups specified by

the user [29]. PyTorch will take a different execution path,

one that does not involve GEMM. However, for point-wise

convolutions, the execution path is directed through GEMM,

as it results in faster convolutions. Due to the presence of

point-wise convolution operators in all bottleneck structures,

we are able to successfully extract hyperparameters end-to-

end.

Figure 12 (left) shows the success rate for each convolution

and fully connected layer when considering the top-1 can-

didate. This means that the attacker computes the score and

selects the candidate to guess which ranked most probable.

The success of the attack is measured by the percentage of

selected guesses that matched the secret hyperparameters of

the layer being considered. In Figure 12 (left), we observe

that, for a subset of convolution layers, the attacker observes

a very low success rate. This is due to the fact that when

the attacker is iterating through all possible candidate guesses,

multiple code cache entries are being activated (since multiple

convolution layers have cached GEMM parameters in the

library), as shown in Table IV.

Therefore, the attacker can modify the scoring mechanism

to select the top-3 candidate choices for each layer instead of

selecting the top-1 choice, as shown in Fig. 12 (right). The

success rate of a top-3 choice can be verified by summing up

the horizontal lines in Table IV. For example, consider conv2d

[42,384,96]. For the row that corresponds to 384 input

channels and 96 filters shows that the combination was ranked

as the second choice in 14% of the experiments and ranked

third in 63% of the experiments. Therefore, [384, 96] achieves

a 77% [=63% + 14%] success rate when considering the top-

3 choices. This shows that by selecting the top-3 choices, the

adversary can successfully narrow down the search space from

over the 1300 possible combinations for each layer, reducing

the number to just 3.

TABLE II: Last Fully Connected Layer Attack Results.

DNN Input Channels Output Channels Success rate

ResNet-18 512 10 99%
ResNet-34 512 10 99%
ResNet-50 2048 10 99%

VGG16 4096 10 99%
VGG19 4096 10 100%

MobileNetV2 1280 10 99%
DenseNet121 1024 10 100%
DenseNet169 1664 10 100%
Inception v3 2048 10 100%
GoogLeNet 1024 10 99%

TABLE III: MobileNetV2 Architecture. Each line describes a

set of 1 or more identical layers, repeated n times. All layers

in the same set have the same number of output channels -

c. The first layer of each set has a stride s and all others use

stride 1. Expansion factor t is used for spatial convolution.

Input Operator t c n s

322 × 3 conv2d - 32 1 2

162 × 32 bottleneck 1 16 1 1

162 × 16 bottleneck 6 24 2 1

162 × 24 bottleneck 6 32 3 2

82 × 32 bottleneck 6 64 4 2

42 × 64 bottleneck 6 96 3 1

42 × 96 bottleneck 6 160 3 2

22 × 160 bottleneck 6 320 1 1

22 × 320 conv2d 1× 1 - 1280 1 1
- dropout 0.2 - - - -

1× 1× 1280 linear - 10 - -

VII. MITIGATION STRATEGIES

In this section we will discuss mitigation strategies that

can be followed to avoid such attacks on valuable intellectual

property. We will discuss them in the order of simplicity in

implementation.

A. User Awareness

Currently, JIT based optimizations in the context of GEMM

libraries remain at a very early stage and the exposure of

new threat surfaces is not widely known. More user awareness

provided by library developers through the documentation will

be beneficial in identifying the exposure to timing side channel

attacks. Reporting vulnerabilities, such as JAXED, helps, will

alert library users of this class of potential exploits.

B. Explicit Code Cache Flushing

Almost all ML frameworks provide a device level abstrac-

tion to run the same DNN on a CPU, GPU or a custom

accelerator. The framework level can be modified to include

device specific initializer and a destroyer so that internal

library caches can be explicitly flushed by the framework to

avoid a timing leakage. For example, if PyTorch detects the

availability of the x86 64 architecture with AVX-512 and the

presence of a JIT GEMM library, device specific actions can

be activated.
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Fig. 12: Attack to discover model parameters of MobileNetV2. Our end-to-end attack attempts to recover model dimensions

of each layer. The Top-1 success rate (left) and the Top-3 success rate (right).

C. Modifying Library Design

Although an internal code cache improves the user friend-

liness, had the cache management responsibility been trans-

ferred to the user, the transparency of JIT GEMM libraries

would be improved. Therefore, in terms of security, the best

practice would be to provide a pointer to the generated code

and the user will have to build her own software caches. Thus,

the user would be responsible for creating any threat surfaces

and not the library.

VIII. RELATED WORK

In the context of recent work on security attacks, we focus

on the domain of JIT compilation and interpreted languages

where optimization is performed. We begin by reviewing re-

lated work on cache timing side-channel attacks and GEMM-

based attacks on ML models.

A. Prior work on attacking JIT behavior

JIT compilation techniques have been used in the domain

of interpreted languages in order to execute programs using

an interpreter (e.g., Python) or to use a virtual machine (e.g.,

Java). Modern JIT compiler implementations involve tech-

niques to dynamically adjust the optimization level. Page [30]

first reported that JIT compilation optimizations could lead

to timing channel vulnerabilities. In this work, Page presents

a case study on a Java implementation of a double-and-add-

based multiplication program, highlighting the timing differ-

ence in the compilation. Based on this observation, Brennan et

al. [13] introduced how non-uniform input distributions could

induce a side channel in a Java virtual machine / Javascript

engine. This information can be used by an adversary to infer

sensitive information and actively exploit the JIT’s focus on

optimization. Based on Brennan et al.’s classification, our at-

tack closely resembles a natural-priming model, a model where

the attacker times their own probing call. However, it differs

from this definition given that we do not explore the majority

observation (which leads to an optimized execution path) but

rather explore the availability of an instruction sequence in

the cache managed by the JIT compilation. Our focus also

differs in that our attack targets JIT-optimized GEMM libraries

and DNN applications. In that sense, we introduce a novel

side-channel attack surface, where JIT compilation employs

an in-built cache for optimization, in contrast to a ”hot” path

execution optimization targeted by the related work.

Interestingly, countermeasures for JIT run-time attacks have

also been proposed. Cleemput et al. [31] reported that statically

compiled programs could still have side channels present at

runtime because side channels present that are related to

the processor pipeline behavior or device availability (on-

line/offline) cannot be addressed unless a dynamic strategy

is adopted. In this work, they demonstrate the use of JIT

compilation to mitigate timing side channels by proposing

to collect application profiles across a range of inputs in a

predetermined training set. Each profile collects information

about the program call graph. Then the methods most vulner-

able to timing attacks are selected. Following that, the control

flow transformations (e.g., if-conversion) and the data flow

transformations are applied to protect critical functions.

There is prior work on transformation approaches that try

to defend against timing side channels on modern x86 pro-
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TABLE IV: The success rate of the top-3 candidate choices

for the secret parameters of each convolution layer. C and f

denotes the number of input channels and the number of filters,

respectively. R0, R1 and R2 denote that the choice was ranked

as first, second or third.

Layer c f R0 R1 R2

conv2d [322, 3, 32]
3 32 80% 20% 0%

320 512 20% 72% 5%
576 128 0% 6% 60%

conv2d [162, 96, 24]
16 96 100% 0% 0%
144 24 0% 68% 32%
96 24 0% 32% 68%

conv2d [162, 24, 144]
32 16 100% 0% 0%
24 144 0% 100% 0%
512 576 0% 0% 59%

conv2d [42, 192, 64]
32 16 99% 0% 0%
192 64 1% 99% 0%
576 1,024 0% 1% 97%

conv2d [42, 64, 384]
16 96 94% 6% 0%
64 384 6% 94% 0%
144 24 0% 0% 92%

conv2d [42, 384, 96]
16 96 100% 0% 0%
96 24 0% 86% 14%
384 96 0% 14% 63%

conv2d [42, 96, 576]
32 16 100% 0% 0%
96 576 0% 87% 13%
24 144 0% 13% 87%

conv2d [22, 960, 320]
960 320 73% 13% 6%
24 1,280 3% 13% 11%
32 1,280 0% 1% 1%

conv2d [22, 320, 1280]
320 1280 49% 21% 9%
4 1,280 7% 3% 4%
3 1,280 1% 0% 4%

cessors [32], [33]. Cleemput et al. [31] combine JIT profiling

with these mitigation approaches to prevent adversarial timing

attacks. Randomization of the control flow, which involves

generating unique execution paths for each program, is an

effective approach proposed by Crane et al. [34] to avoid

timing-based side-channel attacks through JIT compilation.

Frassetto et al. [35] show that by using Intel’s Software

Guard Extensions (SGX), the JIT code compiler can be

isolated, eliminating the possibility of code injection, code-

reuse, or data-only attacks [36], guarding against multiple

threats to software security [37]. However, their approach does

not consider side-channel attacks that take a passive (i.e.,

observatory) approach rather than a tampering approach.

B. CPU induced side channels during runtime

Cache side channels rely on program-dependent behavior

and the use of the CPU hardware caches to perform side-

channel attacks. Cache-based side-channel attacks have been

shown to have a widespread impact due to the growing

dependence on cloud resources [38]–[42]. Acıiçmez et al. [43],

[44] first demonstrated that the CPU’s branch predictor could

be used to perform timing attacks [43], [44]. Many classes of

attack have been demonstrated that employ CPU-induced side

channels [45]–[49].

Building on prior work on cache side channels, Yan et

al. show that the same principles can be applied in other

contexts, such as GEMM (General Matrix Multiplication)

execution [14]. By carefully targeting specific instructions in

the GEMM library, Yan et al. show that matrix dimensions

can be extracted [14]. Cache side-channel attacks can be

deployed against DNN models that utilize GEMM to perform

convolutions. If DNNs are deployed in a shared cloud envi-

ronment, this exposes an attack surface where an adversary

can extract features and model dimensions that may be a

valuable intellectual property of the organization. Yan et al.

employ a hardware cache side-channel attack where the attack

strategy is based on flush+reload [42] or prime and probe.

In addition to model hyperparameter extraction, there has

also been an interest in the extraction of model parameters

(weights) from DNN models [50]. In the context of ML

models (not limited to DNNs), much research has been done

on model extraction [15], [51], [52]. Compared to existing

hyperparameter estimation techniques [51], approaches that

require knowledge of the training dataset, JAXED exposes a

new attack surface which does not need knowledge of the

details of the training dataset.

Recently, due to the diminishing returns on optimization

on CPUs, a trend has emerged where matrix multiplications

for small and medium matrices are optimized through JIT-

based code generators. These optimizations can employ new

architectural advances, such as Intel’s AVX2 and AVX-512

extensions [2]–[4]. These libraries have already been inte-

grated into existing machine learning frameworks, such as

TensorFlow [53] and PyTorch [6].

In our JAXED attack, the first successful attack of its kind,

we show that JIT optimizers that leverage code caches can

expose behavior in a JIT environment which can be easily

exploited by an adversary. We demonstrate a real attack using

the PyTorch framework and successfully extract the model

hyperparameters of a complete DNN. We also show that many

existing DNNs are vulnerable to information leakage with the

introduction of JIT-optimized GEMM libraries.

IX. CONCLUSION

In this paper, we described and demonstrated a novel timing

attack on JIT-optimized GEMM libraries, successfully extract-

ing model hyperparameters. Although previous research has

reported the possibility of extraction of sensitive information in

JIT environments, we are the first to demonstrate an end-to-end

hyperparameter extraction in the context of DNNs using this

new side-channel attack. We believe that our work will educate

both library developers and model users of the existence of

such threat surfaces and motivate new security research in JIT-

optimized GEMM libraries.
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APPENDIX

A. Noise Tolerance of the Attack Strategy

Fig. 9 shows the average success rate of varying output

shape and secret parameter configurations. These experiments

were performed in an environment where only the victim and

adversary were present. Thus, a low level of noise was ob-

served. In addition, we introduce an external compute intensive

ML inference workload to observe the mean success rate in a

noisy environment. Fig. 13 shows the distribution of success

rates when only the attacker and victim are present, and when

an external workload is also present (noisy environment). Even

with noise, 80% of the cases show a average success rate above

0.5.

B. Attacker Model Design Details

In JAXED, the attacker designs her own model and times

her model execution, attempting to match the parameters of

the targeted FC / convolution layer in the victim.

C. Attacker Timing Methodology

Attacker can obtain detailed timing information for her own

model, since she has full observability only over her model

Fig. 13: Cumulative frequency of average success rates when

only the attacker and victim are present and when an external

workload is also present (noisy environment).

Output

Conv2D (in channels=3, out channels=16, kernel size=3, padding=1)

Conv2D (in channels=16, out channels=x, kernel size=3, padding=1)

 Linear (in channels=x, out channels=output size)

Fig. 14: Attacker model design to extract hyperparameters of

the victim model’s FC layer. Since the output size is known, by

guessing the number of input channels, the linear layer (FC)

parameter can be detected. Since the attacker is only interested

in timing, the input image can be chosen to be 1×1 for fast

execution.

execution. For example, in PyTorch 1.9 this can be easily

achieved using the built-in profiler, as shown in Listing 1. The

profiler would provide detailed timing for the layer of interest.

When the attacker guesses different hyperparameters, the

underlying attacker model would be modified and the execu-

tion times will be profiled. By observing the time differences,

after having executed the victim, the attacker should be able

to reveal whether the targeted layer matches that of the victim.

Listing 1: Attacker timing method.

import torch
import models
from torch.profiler import profile,

↪→ record_function, ProfilerActivity

model = models.attacker_model()
inputs = torch.randn(1, 3, 1, 1)

with profile(activities=[ProfilerActivity.
↪→ CPU], record_shapes=True) as prof:
with record_function("model_inference")

↪→ :
attacker_model(inputs)

D. Complete Attack

The attack would involve 3 steps: i) a profiling step where

the attacker gathers her own system behavior and expected

runtimes. ii) next, the attacker would run the victim model

so that the optimized code would be stored in the JIT code
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 Linear (in channels=y, out channels=output size)

Output

Conv2D (in channels=1, out channels=x, kernel size=3, padding=1)

Conv2D (in channels=x, out channels=y, kernel size=k, padding=p, stride=s)

Fig. 15: Attacker model design to extract hyperparameters of

the victim model’s convolution layer. The parameters of the

second convolution layer are guessed so that the execution

would match a convolution layer of the victim.

cache, and finally, when the attacker runs her model, if layer

hyperparameters are shared, a time difference will be observed.

The attack is similar to Listing 2.

Listing 2: Complete attack code.

import intel_pytorch_extension as ipex

device = ipex.DEVICE
if args.option == ’profile’:

profile_sys(iterations, device,
↪→ out_shape, candidate_guesses)

write_profiling_data()
return

elif args.option == ’attack’:
try:

df = read_profiling_data()
except:

raise IOError(’profiling data not
↪→ available. are you sure
↪→ you did the profiling step?
↪→ ’)

run_victim_model()
perform_attack(df, iterations,

↪→ device, out_shape,
↪→ candidate_guesses)

return
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