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Abstract—The Intel PIUMA (Programmable and Integrated
Unified Memory Architecture) is a scalable, massively multi-
threaded architecture designed to operate on unstructured data,
with a global address space, fine-grain memory access and vari-
ous novel features for latency hiding during data movement. Hash
tables are a commonly used data structure with unstructured
data, hence it is imperative that the performance and scaling
for hash table usages are optimized for this architecture. We
study three different hash table implementations on a PIUMA
simulator to show that a dual-atomics based implementation, a
unique feature in PIUMA, performs competitively both at larger
scales and under hash collisions. Our implementations are able
to achieve strong scaling up to 16,384 hardware threads.

Index Terms—Hash table, scalability, graph analytics

I. INTRODUCTION

PIUMA is designed for efficient execution of workloads
operating on unstructured data, such as graph analytics. It
borrows several design principles from the Cray XMT ar-
chitecture [1], and comprises four 16-way threaded compute
pipelines and two single threaded pipelines in each core, along
with a scratchpad and a few special-purpose engines, with
a scalable, hierarchical network fabric connecting the cores.
Since data access latency is a key bottleneck in workloads
operating on unstructured data, the architecture has several
features to mitigate this latency, such as massive multi-
threading, fine-grained memory access, data movement offload
engines and a software managed scratchpad. Specifically, for
implementing atomic update operations needed for concurrent
hash table insertions, it offers the following mechanisms:

Atomics - atomic instructions on PIUMA are performed by
the atomic unit, which is separate from the pipelines, allowing
them to proceed asynchronously where possible.

Dual atomics - PIUMA supports a family of operations
termed dual-atomics in its instruction set, wherein an addi-
tional operation such as a load or store is carried out in
conjunction with an atomic operation. This avoids a round trip
between back to back operations, as is common in hash table
insertions. However, the two addresses that the instruction
operates on, must reside in the same cache line.

Queue engines - Hardware managed queues are available for
software use, by configuring them using programmable regis-
ters and to enqueue and dequeue data atomically, using special
instructions. The pipeline can make independent progress by
offloading queueing to these engines.
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II. HASH TABLE IMPLEMENTATIONS

Workloads operating on unstructured data, like graph al-
gorithms (e.g., graph2vec [2], TIES [3], SpGeMM [4]) make
extensive use of hash tables. Typically, these workloads’ uses
of hash tables occur in phases, where in one phase the hash
table is built, and in a later distinct phase, its entries are looked
up. In algorithms with iterative computations, the hash table is
typically cleared after the completion of lookups, then rebuilt
based on the next iteration of data. Given such a use-case,
the implementations of concurrent insertions and lookups gain
significance.

Various design choices for hash tables exist, based on
the data layout, hashing function, collision resolution, among
others. We choose an open addressing implementation for
its lower overheads, especially at lower load factors, and a
computationally simple hashing function [5]. Unlike in con-
ventional architectures where computation is relatively cheap
and data movement is limited by latency, in PIUMA the data
access latency is amortized, however arithmetic computations
(such as those comprising complex hashing functions) can
have higher overheads due to the fine-grained 16-way multi-
threading. We use linear probing to resolve collisions due to its
simpler implementation, however more elaborate techniques
such as Robin Hood hashing [6] can also be used with
minor modifications. We consider 64-bit each key-value pairs
for storage, hence insertion consists of an atomic compare
exchange which if successful, is followed by a store, and an
attempt to insert at the next location if not. Alternatively, these
two operations can also be performed in one shot with a dual
atomic instruction. A third option, which uses the queue engine
to serialize insertions into a hash table, is found to be less
performant than atomics and dual-atomics. Lookups are very
straightforward, based on linear probing and are not explored
in this paper due to space constraints.

Fig. 1: Performance under no contention
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Fig. 2: Performance under contention

III. EXPERIMENTAL RESULTS

The implementations discussed in Section II are developed
using the PIUMA toolkit, a software library that enables
SPMD programming on PIUMA, with a custom LLVM-based
compiler. The resulting program is executed on an in-house
version of Sniper [7] developed for this architecture (and
validated against the PIUMA RTL models for accuracy), to
gather execution and instruction timing, bandwidth utilization,
among other statistics.

PIUMA is designed for high data throughput to amortize the
latency of operating on unstructured data, with the memory
and network bandwidths provisioned according to the number
of processing units. Scalability in this architecture is achieved
by saturating the memory bandwidth. For hash table inser-
tions using the atomic operation, the insertion loop has the
equivalent of 4 memory loads every 13 instructions. This is
sufficient to saturate the bandwidth, since the per-core memory
bandwidth is provisioned for a memory load per 4 instructions.

Dual atomics save bandwidth by avoiding a round trip
between the pipeline and the remote memory controller. How-
ever, their encoding in PIUMA requires the addresses to be
specified as offsets from cacheline boundary, adding overheads
in organizing the operands to the instruction. These overheads
could impact the gains arising from avoiding the round trip.
In an improvement to dual-atomics, termed padded duals, the
hash table entries are pad-aligned to cacheline boundaries, to
ensure the offsets in the instruction encoding are always zero,
but also increasing the size of the hashtable as a consequence.
This change results in a shorter instruction sequence in the
critical path, at the expense of extra unused space between
hashtable entries.

For our evaluations, we perform concurrent insertions of
uniformly distributed keys from all multi-threaded pipelines
into a 4GB hashtable until it gets half-full, and measure
the insertion rate while varying the number of cores from 1
to 256 (a PIUMA node). With 64 threads enabled on each
core, a node comprises 16,384 threads. Fig. 1 compares the
performance of atomics against dual-atomics, as well as the
padded duals implementation. Atomics narrowly outperform
dual-atomics at lower scales, as the overheads involved in
emitting the right type of dual atomics instruction outweigh
the gains from avoiding a memory round trip. At the node
level the trend reverses: with the hash table striped across the
two memory controllers available at this scale, the gains due to

avoidance of a round trip with dual atomics on remote memory
controllers start to be substantial. Padded duals outperform
both these implementations at all scales. Introducing hash
collisions (∼ 12%) to this setup (Fig. 2) results in a mostly
uniform performance drop arising from contention, regardless
of the implementation. However, dual atomics generate a lower
bandwidth utilization despite the contention.

Finally, we study the scalability of hash insertions in a
practical workload, graph2vec, using a real world dataset for
malware classification based on API dependency graphs. This
dataset has 12M vertices and is 93MB in size. We simulate a
portion of the modified version of the algorithm, where each of
the various subgraphs is encoded as a 64-bit integer value and
inserted into the hash table, using a prime modulo as the hash
function. This workload uses a modified insertion algorithm,
wherein the previously inserted value is returned in the case
of a collision. The results in Fig. 3 show dual atomics to be
outperforming, due to a high collision rate (∼ 44%) in this
dataset.

Fig. 3: Insertions with graph2vec on malware dataset

IV. CONCLUSION

Dual-atomics, a new feature of the PIUMA system, outper-
forms atomics-based hash table insertions at larger scales and
under hash collisions, even as both forms demonstrate close-
to-linear strong scaling. Dual atomics require pad-aligning
hashtable entries to avoid instruction-encoding related over-
heads, and the use of alternative encodings to avoid these
overheads is currently being explored. Future work in this
direction involves extending the dual-atomics based hash table
implementation to other workloads and at performance trends
at scales larger than a PIUMA node.
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