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Enabling Accelerators for Graph Computing

by

Kaustubh Shivdikar

Doctor of Philosophy in Electrical and Computer Engineering
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Dr. David Kaeli, Advisor

The advent of Graph Neural Networks (GNNs) has revolutionized the field of machine
learning, offering a novel paradigm for learning on graph-structured data. Unlike traditional neural
networks, GNNs are capable of capturing complex relationships and dependencies inherent in graph
data, making them particularly suited for a wide range of applications including social network
analysis, molecular chemistry, and network security. The impact of GNNs in these domains is
profound, enabling more accurate models and predictions, and thereby contributing significantly to
advances in these fields.

GNNs, with their unique structure and operation, present new computational challenges
compared to conventional neural networks. This requires comprehensive benchmarking and a thor-
ough characterization of GNNs to obtain insight into their computational requirements and to iden-
tify potential performance bottlenecks. In this thesis, we aim to develop a better understanding of
how GNNs interact with the underlying hardware and will leverage this knowledge as we design
specialized accelerators and develop new optimizations, leading to more efficient and faster GNN
computations.

A pivotal component within GNNs is the Sparse General Matrix-Matrix Multiplication
(SpGEMM) kernel, known for its computational intensity and irregular memory access patterns.
In this thesis, we address the challenges posed by SpGEMM by implementing a highly optimized
hashing-based SpGEMM kernel tailored for a custom accelerator. This optimization is crucial to
enhancing the performance of GNN workloads, ensuring that the acceleration potential of custom
hardware is fully realized.

Synthesizing these insights and optimizations, we design state-of-the-art hardware accel-
erators capable of efficiently handling various GNN workloads. Our accelerator architectures are
built on our characterization of GNN computational demands, providing clear motivation for our

x



approaches. Furthermore, we extend our exploration to emerging GNN workloads in the domain of
graph neural networks. This exploration into novel models underlines our comprehensive approach,
as we strive to enable accelerators that are not just performant, but also versatile, able to adapt to
the evolving landscape of graph computing.
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Chapter 1

Introduction

In the vast landscape of computation,

graphs stand as the bridges connecting

isolated islands of data, creating a coherent

world from chaos.

Inspired by Donald Knuth

Graph computing traces its lineage back to some of the earliest pursuits of mathematics.

Historically, graph theory took its first steps in the 18th century with Leonhard Euler’s formulation

of the Seven Bridges of Königsberg problem, where he proved that it was impossible to traverse

each of the city’s seven bridges once and only once without retracing any step [57]. This abstract

representation allowed for the modeling of a wide variety of systems, from social interactions to

intricate molecular structures. However, for much of its history, graph theory remained primarily an

academic endeavor with limited computational exploration, owing to the computational constraints

of the era.

With the digital revolution of the late 20th century, computing power saw unprecedented

growth. As industries started grappling with vast amounts of interconnected data—from the nascent

Internet’s web pages, to the massive social networks—there emerged, a pressing need for effective

means to process and analyze this data. It was in this backdrop that graph computing began its

ascent, evolving from theoretical speculations to practical, essential toolsets. The challenge shifted

from simply understanding graph structures to efficiently processing them, leading to the explo-

ration of specialized hardware and software solutions. This combination of data-centric challenges

and available computational power provides the motivation for this thesis.

1



1.1. BACKGROUND AND MOTIVATION

1.1 Background and Motivation

Graphs have seen a growing role in modern computational domains. With the rise of

vast amounts of complex, interconnected data, traditional data processing methods have often fallen

short. Enter Graph Neural Networks (GNNs), a specialized neural network architecture designed to

handle such data and extract insights from these intricate connections. GNNs have shown remark-

able potential in various domains, offering solutions where conventional methods have struggled.

Their capacity to model relational data naturally fits a wide range of applications, spanning from

social network analysis to molecular chemistry. To delve deeper into their capabilities, here is a list

of GNN applications.

1. Social Network Analysis: Graphs are essential in Social Network Analysis (SNA) to under-

stand interactions within networks such as Facebook and Twitter. By examining these struc-

tures, SNA can detect key influencers, community structures, and predict potential trends or

misinformation spread [31, 181, 197].

2. Computer Networks: Graphs represent devices and communication pathways in computer

networks, aiding in tasks such as routing and fault detection. Graph-based algorithms opti-

mize network design and manage potential vulnerabilities [68, 81, 217].

3. Hardware Security: Circuits can be represented as graphs to detect anomalies, such as po-

tential Hardware Trojans. Graph Neural Networks (GNNs) further enhance detection capa-

bilities, pinpointing subtle irregularities [4, 76, 204].

4. Bioinformatics: In bioinformatics, graphs are used to model entities, for example, protein

interactions and genetic sequences. They help identify conserved patterns in DNA or RNA,

study metabolic pathways, and analyze genomic variations [18, 116].

5. Financial Markets: Graphs illuminate interactions in financial markets. They help ana-

lysts identify correlated assets, assess systemic risks, and optimize algorithmic trading strate-

gies [20, 55, 77].

6. Neuroscience: Representing the brain’s complex structure, graphs in neuroscience help an-

alyze neural networks, understand (Functional magnetic resonance imaging) fMRI data, and

study the brain’s topological properties [15, 24, 59, 167].

2
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Figure 1.1: Graph Computing Applications
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1.1. BACKGROUND AND MOTIVATION

7. Transportation and Logistics: Graphs map transportation networks, aiding in solving op-

timization problems such as route planning and vehicle routing. They help ensure efficient

deliveries, optimize public transit, and adapt to disruptions [47, 69, 108, 201].

8. Chemistry: Molecular structures in chemistry are represented using graphs, predicting chem-

ical properties, identifying isomers, and aiding in drug design [12, 178, 180, 190].

9. Physics: Graphs in physics are used to model quantum states, lattice structures, and network

systems. They aid in understanding quantum computing, material properties, and system

dynamics [13, 29, 79, 192].

10. Machine Learning and Data Mining: In machine learning, graphs facilitate clustering, clas-

sification, and feature extraction. They model non-Euclidean data, aiding in semi-supervised

learning and geometric deep learning [23, 34, 191, 218].

11. Telecommunications: Graphs underpin the telecommunications sector, assisting in routing,

optimization, and network slicing for 5G technologies [3, 64, 140, 187].

This list showcases the wide impact of concepts from graph theory across a multitude of

domains. Figure 1.1 illustrates specific applications of graphs across various domains. As intercon-

nected systems become increasingly central to understanding our world, the role of graph theory is

likely to grow even more essential.

In the wake of the rising importance of graph-based computations, the hardware land-

scape within the compute industry began to undergo key shifts. Traditional Central Processing

Units (CPUs), initially designed for sequential tasks, started incorporating SIMD-based graph ex-

tensions to enhance parallel processing capabilities [216].Graphics Processing Units (GPUs), with

their inherent parallelism, were enhanced with kernel support tailored specifically for graph algo-

rithms [148,175]. Beyond these general-purpose processors, the industry also witnessed the advent

of domain-specific accelerators [86, 115, 153, 203], specifically crafted to speedup graph computa-

tions, addressing the unique challenges and demands that graph algorithms present.

On the software front, comprehensive software stacks have been designed from the ground

up, specifically focusing on facilitating efficient graph processing. Libraries such as PyTorch-

Geometric [58] and Deep Graph Library (DGL) [186] emerged, offering robust platforms for re-

searchers and developers to implement and optimize graph algorithms. These software advances,

in tandem with hardware innovations, have pushed the field of graph computing further forward.
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1.2. CHALLENGES IN ACCELERATING GRAPH COMPUTING

However, as with any rapidly evolving domain, while significant strides have been made, the jour-

ney is far from over. The vast potential of graph computing continues to present both challenges

and opportunities that require further exploration and innovation.

1.2 Challenges in Accelerating Graph Computing

As promising as GNNs are, they are not without their computational challenges. Given

the inherently recursive nature of GNNs, coupled with the irregular structure of many real-world

graphs, we find significant bottlenecks in terms of their scalability and performance. Parallelizing

GNN computations, which seems to be a logical solution given the abundance of task-level paral-

lelism in graph processing, is riddled with data dependencies. The core challenges lie in the low

spatial locality of data, which results in memory access inefficiencies and the computation stalls,

making it difficult to achieve scalable parallel performance. Addressing these challenges is piv-

otal to harnessing the full potential of GNNs and making them a feasible solution for large-scale,

real-world applications.

1.2.1 Scalability Concerns in Graph Neural Networks

GNNs present unique challenges in handling large graphs, which often involve billions

to trillions of nodes and edges [60]. The computational and memory demands of processing such

exascale graphs escalate rapidly, often making computations infeasible on standard computational

infrastructures. For instance, the Friendster social network graph comprises over 65 million nodes

and 1.8 billion edges [200]. When applying GNNs to this magnitude of data, the iterative and recur-

sive nature of these networks requires massive memory bandwidth and computational power. Even

more complex graphs from biological and cosmological simulations are looming on the horizon, po-

tentially reaching the exabyte scale [9]. Addressing the scalability challenges with GNNs on these

graphs will be paramount to unlocking new scientific discoveries and advances in several fields.

1.2.2 Task-Level Parallelism in Graph Computations

Graph computations inherently possess a rich vein of task-level parallelism, given that

many operations can theoretically be conducted simultaneously across different nodes or subgraphs [125].

This natural parallelism emerges from the decentralized structure of graphs, where independent sub-

tasks can be identified and processed in parallel, especially in sparse graph computations. However,
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this potential for parallelism is intermingled with intricate data dependencies among nodes and

edges. These dependencies arise from the interconnections in the graph, leading to situations where

the output of one task is contingent upon the result of another, thus necessitating synchronization

and communication [17]. Consequently, fully capitalizing on the inherent task-level parallelism,

while managing data dependencies, poses significant challenges, requiring advanced strategies to

ensure efficiency and accuracy in graph computations.

1.2.3 Data Spatial Locality and Computational Irregularity

Graph computations, especially in the realm of GNNs and large-scale graph analytics, en-

counter two predominant challenges: 1) data spatial locality and 2) computational irregularity [38].

First, the lack of data spatial locality implies that successive operations might access data dispersed

across memory, leading to increased cache misses and degraded memory performance. Graphs,

being inherently non-uniform, result in unpredictable memory access patterns, often unable to take

advantage of cache hierarchies in modern processors [104]. Second, computational irregularity in

graph algorithms surfaces due to the diverse node degrees and edge distributions, causing work-

load imbalance in parallel computing scenarios. This irregularity complicates efficient scheduling

on parallel hardware and requires sophisticated load-balancing techniques to mitigate performance

imbalance [97]. Both challenges pose barriers to fully realize the benefits of parallelism in graph

computing.

1.3 Objectives and Contributions

The development of a graph accelerator tailored for GNN workloads requires follow-

ing a systematic approach. Initially, our efforts are concentrated on conducting comprehensive

benchmarks and characterizations of the GNN workloads, along with the various kernels targeted

for optimization. Subsequently, our attention shifts to addressing a significant bottleneck in GNN

workloads—the SpGEMM kernel—by devising and implementing an optimized version specifi-

cally for a custom accelerator. Finally, we integrate these insights and optimizations to architect a

hardware accelerator, specifically designed to enhance the performance across a diverse range of

GNN workloads. A summary of these objectives and their associated contributions is presented in

Table 1.1.
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Objective Contribution

Analyze the architectural impact of
computing Graph Neural Networks.

Provide a benchmark suite for
comprehensive evaluation of how
different architectural components
influence the performance and
efficiency of GNN computations.

Accelerate SpGEMM kernel on
custom accelerator.

Propose and implement optimization
strategies for the SpGEMM kernel,
resulting in significant performance
improvements on a custom hardware
accelerator.

Design a new accelerator to accelerate
multiple GNN workloads.

Develop a novel hardware accelerator
architecture tailored for various GNN
workloads, demonstrating versatility
and improved performance across
sparse and dense compute kernels.

Table 1.1: Summary of Objectives and Contributions

1.4 Dissertation Organization

• Chapter 1: This chapter sets the stage for the thesis by highlighting the significance and

impact of computations based on graph structures.

• Chapter 2: This chapter provides background on the foundations of graph theory, providing

a comprehensive overview of the various types of graphs, their properties and their represen-

tations. It also introduces machine learning on graphs, with a specific focus on Graph Neural

Networks (GNNs), explaining their structure, functionality and applications.

• Chapter 3: This chapter presents a thorough review of previous work in the domain, dis-

cussing existing approaches and solutions in workload characterization, GPU acceleration,

Coarse-Grained Reconfigurable Arrays (CGRAs), and custom accelerators specifically de-

signed for GNN workloads.

• Chapter 4: We present a GNN benchmark suite in this chapter, offering a curated collection

of workloads and tools to assess the performance of GNN computations. In addition, we con-

duct extensive analysis of the architectural requirements to efficiently run GNN workloads,

examining how different components and configurations affect overall performance.
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• Chapter 5: We explore the SMASH (Sparse Matrix Atomic Scratchpad Hashing) algorithm,

a novel SpGEMM kernel optimization aimed at enhancing GNN processing. We discuss the

development and implementation of SMASH, including its various versions tailored to exploit

distinct architectural features for improved efficiency in GNN workloads.

• Chapter 6: In this chapter, we introduce NeuraChip, a custom CGRA-based accelerator de-

signed to meet the unique demands of GNN computations. We provide detailed discussion on

the architecture, including its heterogeneous processing approach, adaptive hash-based com-

pute mapping, and mechanisms for rolling evictions, highlighting how NeuraChip addresses

critical bottlenecks in GNN acceleration.

• Chapter 7: The concluding chapter discusses the key insights and contributions of this work,

ranging from the development of a GNN benchmark suite, to the introduction of algorithmic

and hardware innovations such as SMASH and NeuraChip. We reflect on the impact of these

contributions on the field of GNN acceleration. We also cover potential directions for future

GNN research to explore further advancements in graph computing.
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Chapter 2

Fundamentals of Graph Computing and

Accelerator Architectures

Before delving into the details of our accelerator proposal for graph computing, we ex-

plore the foundational concepts of graph computing and accelerator design. This chapter serves as a

foundation, offering a systematic overview of the essential background, terminology and challenges

that characterize graph computing, as well as its impact on hardware accelerators. By first review-

ing these foundational elements, this chapter aims to provide the necessary background required to

understand GNN accelerator design.

2.1 Graph Theory Basics

Graph theory is a field within mathematics that explores the structure of interconnected

nodes and edges. Graphs have gained widespread recognition for their ability to represent non-

euclidean data. Graphs can represent many real-world problems, from network topologies and social

networks to transportation systems and molecular structures. This section provides an overview

of the fundamental elements of graphs, before diving into the use of graph-based applications in

machine learning. Figure 2.1 represents a social network graph, demonstrating how individuals are

connected. We also provide the associated adjacency matrix, which quantitatively captures these

connections. Additionally, for each individual in the network, a feature vector is provided that

captures various attributes or characteristics associated with that individual.

Mathematically, a graph G is a pair of vertices (i.e., nodes) V and edges E, that is repre-

sented as:
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2.1. GRAPH THEORY BASICS

G = (V,E) (2.1)

where V is a set of vertices, and E is an unordered set of pairs of vertices. A singular

edge e within the set of edges E is represented as e = {x, y} or simply e = xy, where x and y are

endpoints (nodes) of the edge. x and y are said to be neighbors or adjacent nodes in the graph G.

Adjacency Matrix

1 0 0 1

0 1 0 1

1 1 0 1

0 0 0 0
0 1 1 0

1 0 0 0

1 0 1 1
1 1 0 0

Node

Features

1 0 1 0 0 0 0 0
0 1 1 0 0 0 0 0
1 1 1 1 1 1 0 0
0 0 1 1 0 0 0 0
0 0 1 0 1 0 0 0
0 0 1 0 0 1 1 1
0 0 0 0 0 1 1 0
0 0 0 0 0 1 0 1

Social Network Graph along with its
feature vectors

Figure 2.1: An example of a social network graph and its corresponding adjacency matrix. Each
node in the graph is associated with a feature vector that contains the node’s attributes.

2.1.1 Graph Properties

Graph properties provide insight into the structure, characteristics and behavior of graphs.

Here are some of the fundamental properties and characteristics of graphs:

1. Degree: The number of edges incident on a vertex. In directed graphs, we differentiate

between in-degree (number of incoming edges) and out-degree (number of outgoing edges).

2. Order and Size: The order of a graph refers to the number of vertices and the size refers to

the number of its edges.

3. Diameter: The longest shortest path between any two vertices.

4. Radius: The minimum eccentricity of any vertex in the graph. The eccentricity of a vertex is

the greatest distance from the vertex to any other vertex.
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5. Girth: The length of the shortest cycle in the graph.

6. Adjacency: Two vertices are said to be adjacent if they are connected by an edge.

7. Clique: A set of vertices where each pair is adjacent.

8. Path: A sequence of vertices where each adjacent pair is connected by an edge.

9. Cycle: A path that starts and ends at the same vertex. A cyclic graph is a graph that contains at

least one cycle, which is a sequence of vertices where the first and last vertices are the same,

and each pair of consecutive vertices in the sequence is connected by an edge. An acyclic

graph is a graph that contains no cycles.

10. Connectivity: A graph is connected if there’s a path between every pair of vertices. In

directed graphs, if a graph is strongly connected, there is a directed path between any pair of

vertices.

11. Connected Components:

For undirected graphs: A connected component is a subgraph in which any two vertices are

connected to each other by paths, and which is connected to no additional vertices in the

supergraph (i.e., the main graph). In simpler terms, a connected component is a “piece” or

“part” of the graph where there’s a route between any pair of nodes within that piece, but no

connection to nodes outside of it.

For directed graphs: Connected components are further classified as Strongly Connected

Components and Weakly Connected Components.

Strongly Connected Components: A strongly connected component of a directed graph is a

maximal strongly connected subgraph. This means that for every pair of vertices u and v in

the subgraph, there’s a directed path from u to v and a directed path from v to u.

Weakly Connected Components: If you were to ignore the directionality of the edges in

a directed graph, and the graph becomes connected, then the graph is said to be weakly

connected. The maximal subgraphs of this type are the weakly connected components.

12. Planarity: A graph is said to be planar if it can be embedded (i.e., drawn) in the plane such

that no edges intersect or cross each other except at their endpoints (vertices). In other words,

a graph is planar if it can be drawn on a flat surface without any of its edges overlapping
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or crossing, except where they meet at nodes. This definition applies to both directed and

undirected graphs.

13. Isomorphism: Isomorphism refers to a one-to-one correspondence between the vertices of

two graphs such that the adjacency relation between pairs of vertices is preserved. In simpler

terms, two graphs are isomorphic if they are essentially the same in terms of structure, though

they might look different in their graphical representation.

Formally, two graphs G1 and G2 are said to be isomorphic if there exists a bijective function

f : V (G1) → V (G2) such that for any two vertices u and v of G1, there is an edge between

u and v in G1 if and only if there is an edge between f(u) and f(v) in G2.

2.1.2 Types of Graphs

Graphs can be categorized in various ways based on their properties, structures, and ap-

plications. Below is an overview of the primary types of graphs:

1. Undirected Graph: An undirected graph is a simple structure consisting of nodes, also

known as vertices, connected by edges. In this type of graph, the edges don’t have a spe-

cific direction. That is, if vertex A is connected to vertex B, then vertex B is equivalently

connected to vertex A. Such graphs are commonly used to represent symmetric relationships,

for example, friendships in a social network.

2. Directed Graph (or Digraph): Directed graphs, often called digraphs, also comprise vertices

and edges. However, the crucial difference is that the edges have a direction. An arrow from

vertex A to vertex B signifies a one-way relationship. Digraphs are especially useful in

representing prerequisites in a course structure or transitions in a finite automaton.

3. Weighted Graph: A weighted graph assigns a specific weight or value to each of its edges.

This weight can represent various characteristics such as distance, cost, or any measurable

quantity relevant to the problem being addressed. For instance, in mapping out a city’s road

network, the weights could symbolize the distances or travel times between intersections.

4. Unweighted Graph: Contrary to weighted graphs, unweighted graphs treat each edge equally,

without any specific value or weight assigned. Such graphs are often utilized in scenarios

where only the relationship or connection between nodes is of interest, without any quantita-

tive measure on the edges.
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5. Cyclic Graph: A cyclic graph contains at least one cycle, which is a closed path in which

a vertex is revisited without retracing any edge. Cyclic graphs can represent systems or net-

works where it’s possible to return to a starting point via a unique route.

6. Acyclic Graph: An acyclic graph is devoid of any cycles. This means it’s impossible to start

at one vertex and traverse the graph in such a way that you return to the starting vertex without

backtracking. A classic example of an acyclic graph is a tree.

7. Connected Graph: In a connected graph, there exists a path between every pair of vertices,

ensuring that no vertex is isolated. Such graphs are particularly valuable in scenarios where

continuous connectivity is essential (communication networks are one such example).

8. Disconnected Graph: As the name suggests, a disconnected graph has one or more vertices

that aren’t connected to the rest of the graph. In other words, not all pairs of vertices are

reachable from each other. Such graphs might represent fragmented or isolated systems.

9. Complete Graph: A complete graph is a robust structure where every pair of distinct vertices

is connected by a unique edge. In terms of social networks, a complete graph would mean

every person knows every other person directly.

10. Bipartite Graph: A graph G is called bipartite if its vertex set can be partitioned into two

disjoint sets U and V such that every edge connects a vertex in U to one in V . This means

that there are no edges that connect vertices within the same set U or within the same set V .

Formally, a graph G = (V,E) is bipartite if there exists a partition (U, V ) of its vertex set V

such that for every edge (x, y) ∈ E, either x ∈ U and y ∈ V or x ∈ V and y ∈ U .

11. Planar Graph: A planar graph can be drawn on a plane without any edges crossing, except at

their endpoints. Such graphs are beneficial in specific design and layout problems, ensuring

no overlaps or intersections.

12. Tree: A tree is a special kind of graph that’s both connected and acyclic. Trees are hierarchical

structures commonly used in computer science for data structures such as binary search trees

and file systems.

13. Forest: A forest is a collection of disjoint trees, meaning it’s acyclic but not necessarily

connected. Forests can represent multiple independent hierarchies or classifications within a

system.
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14. Multigraph: Multigraphs allow for multiple edges, also termed parallel edges, between the

same set of vertices. This type of graph can be useful in scenarios where multiple distinct

relationships or connections exist between the same entities.

15. Simple Graph: A simple graph is a basic structure where each pair of vertices shares at most

one edge, and there are no loops. It’s the foundational form of many other graph types and

serves as a starting point in many graph theory discussions.

16. Hypergraph: A hypergraph generalizes the traditional graph concept by allowing edges,

often called hyperedges, to connect any number of vertices, not just two. Hypergraphs can

represent complex relationships that don’t fit neatly into pairwise associations.

17. Subgraph: A subgraph is formed by selecting a subset of vertices and edges from a larger

graph, without introducing any new ones. Subgraphs are crucial for analyzing specific por-

tions or aspects of a larger network or system.

18. Regular Graph: In a regular graph, every vertex has the same degree, meaning each node

connects to an equal number of other nodes. This uniformity can simplify certain analyses

and algorithms. Specifically in the context of graph computations, Regular graphs lead to

close to uniform work distribution across the computing cores.

2.1.3 Graph Representation

Graphs, as abstract mathematical structures, need to be represented in a tangible form,

especially for computational processes. The choice of representation can significantly influence the

efficiency of various graph algorithms. The most common forms of graph representation include:

1. Adjacency Matrix: This is a 2D array of size V × V (where V is the number of vertices in

a graph). The entry mij is either 1 (or the edge’s weight) if there’s an edge between vertices

i and j, and 0 otherwise. While this method provides a quick way to check the presence

of a specific edge, it can be space-inefficient for sparse graphs as it requires O(V 2) space.

Figure 2.1 illustrates a social network graph alongside its representation in adjacency matrix

format.

2. Adjacency List: For every vertex, a list of its adjacent vertices is maintained. This represen-

tation is more space-efficient for sparse graphs. In this method, an array of lists is used, with
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the size of the array being equal to the number of vertices. The ith position in the array holds

a list of nodes to which node i is connected.

3. Incidence Matrix: This is a 2D array where rows represent vertices and columns represent

edges. For example, for an undirected graph, the entry mij is 1 if vertex i is incident to edge

j, -1 if i is the edge’s terminal vertex, and 0 otherwise. For a directed graph, the entry is -1

for the tail of the arrow (edge) and 1 for the head.

4. Edge List: This is a list of pairs (or triples, if weights are present) that represent edges. For

instance, an edge from vertex A to vertex B with weight w can be represented as (A,B,w).

This representation is particularly useful when the graph structure is more concerned with

edges rather than vertices.

The choice of representation often hinges on the specific operations that need to be op-

timized. For instance, adjacency lists are faster for traversal algorithms, while adjacency matrices

can be more suitable for algorithms involving edge lookups or matrix operations.

2.1.4 Graph Transformation

Graph transformation is a powerful technique that focuses on the modification and manip-

ulation of graph structures. It offers a systematic way to derive a new graph from an existing one,

serving both as a computational tool and a conceptual methodology to analyze various properties

and behaviors of graphs. Common types of graph transformations include:

1. Subgraph Extraction: This involves creating a new graph by selecting a subset of vertices

and edges from the original graph, usually based on certain criteria or conditions.

2. Graph Contraction: This process combines multiple vertices into a single vertex, often to

simplify a graph’s structure while retaining its fundamental characteristics.

3. Graph Expansion (or Vertex Splitting): This is the reverse of contraction. A single vertex

is expanded into multiple vertices, with edges adjusted accordingly.

4. Edge Contraction: Two vertices connected by an edge are merged into a single vertex, and

the edge is removed. The new vertex retains all edges that the original vertices had, except

for the contracted edge.
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5. Line Graph Transformation: Given a graph, its line graph is another graph representing

the relationship between the edges of the original graph. Each vertex in the line graph repre-

sents an edge in the original graph, and two vertices in the line graph are connected if their

corresponding edges in the original graph are incident on a common vertex.

6. Dual Graph Transformation: Applied typically to planar graphs, this creates a vertex in

the dual graph for every face in the original graph, and two vertices in the dual graph are

connected by an edge if their corresponding faces in the original graph are separated by an

edge.

Graph transformations play a crucial role in a myriad of applications, including algorithm

design, network analysis, and optimization problems, by enabling alternative perspectives

and simplifications of the original structures.

2.2 Machine Learning on Graphs

Building upon the principles of graph theory just reviewed, we now transition to the ap-

plications. Graphs are useful abstractions as then naturally map to a number of machine learning

tasks. Graphs are used for non-Euclidean data structures that encapsulate relationships, hierarchies,

and patterns, which are difficult to model in traditional data formats. In this section, we delve into

the techniques, algorithms, and challenges associated with leveraging graph data for predictive and

analytical tasks. This emerging field promises important advancements in domains ranging from

social network analysis and recommendation systems to bioinformatics and traffic routing.

2.2.1 Graph Neural Networks

Graph Neural Networks (GNNs) have emerged as powerful tools for learning and process-

ing data structured as graphs. Unlike traditional neural networks that operate on fixed-size vectors,

GNNs work directly with graphs, accommodating their non-euclidean nature and inherent irregular-

ities. At the core of GNNs lies the principle of aggregating information from a node’s neighbors to

iteratively update the node’s representation. This process captures both local structures and broader

topological features of the graph. Through successive layers, GNNs can accumulate and transform

information from increasingly larger neighborhoods around each node. This ability to learn mean-

ingful representations of nodes, edges, or entire graphs has led to their successful application in

diverse areas such as social network analysis, molecular chemistry, and recommendation systems,
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bridging the gap between the rich expressivity of graphs and the computational capabilities of deep

learning.
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Figure 2.2: Analysis of Graph Neural Networks, demonstrating the propagation of node properties
influenced by the graph’s topology.

Before a GNN model can make predictions, the model must first be trained. As shown

in Figure 2.2, the goal of GNN training is to learn correlation parameters for each node, capturing

its relation to the rest of the graph. More specifically, a feature vector for node A relates node

A’s properties to its neighbors’ properties, nodes B, C and E. Each of these neighbors, in turn, has

their own feature vectors to relate to their own neighbors. Hence, the properties of node A can

be associated with the properties of every other node in the graph. This feature of GNNs is also

useful for finding missing properties of nodes in a graph. Similar to DNNs, a GNN can also have

multiple layers, with each layer represented by two functions: i) an aggregation function and ii)

an update function (i.e., a combination function). As the name suggests, the aggregation function

is responsible for collecting or pooling the features of the neighbors for a given node. On the

other hand, the update function is responsible for updating each node’s feature vectors using Multi-

Layer Perceptrons (MLPs). A GNN model can have layers with different aggregation and update

functions. The deeper the GNN model, the more information a node has about other nodes that

are distant from it in the graph. However, training deeper GNNs is difficult, primarily due to the

vanishing gradient problem [80]. As GNNs grow deeper, the gradients become so small that the

weights stop getting updated. This property makes it difficult to train the GNN further. To address

these challenges, novel GNN architectures have been proposed to enable deeper GNN models [111].
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2.2.2 Graph Convolutional Networks

Graph Convolutional Networks (GCNs) represent a key advancement in the domain of

graph-based machine learning. These networks are designed to process data structured as graphs,

allowing for the consideration of both node features and the graph’s inherent structure. Traditional

neural networks are ill-suited for graph data due to the irregular and non-Euclidean nature of graphs.

In contrast, GCNs leverage the spatial relationship between nodes to propagate and aggregate infor-

mation through the graph, thus learning a more comprehensive representation of the data.

The propagation rule for a GCN layer can be described as:

H(l+1) = σ
(
D̃− 1

2 ÃD̃− 1
2H(l)W(l)

)
(2.2)

Where:

H(l) is the matrix of node features at layer l.

Ã is the adjacency matrix of the graph with added self-connections

D̃ is the diagonal node degree matrix of Ã.

W (l) is the weight matrix for layer l.

σ is an activation function, e.g., the ReLU function.

The key principle of a GCN is the neighborhood aggregation scheme. For each node in

the graph, a GCN layer aggregates feature information from its neighbors and possibly itself. This

aggregated information is then passed through a transformation (usually a linear transformation,

followed by a non-linear activation function). The process can be iteratively run over multiple

layers, enabling the aggregation of information from a larger neighborhood at each subsequent

layer. The inclusion of this spatial-based information aggregation makes GCNs particularly adept

at node classification, graph classification, and link prediction, especially when the structure of the

graph plays a significant role in the underlying data distribution.

2.2.3 Graph Isomorphism Networks

Graph isomorphism is a central concept in the field of graph theory, revolving around the

study of the structural equivalence between two graphs. Two graphs G1 and G2 are considered iso-

morphic if there exists a one-to-one correspondence (or bijective function) between their vertices,

such that the adjacency relationship is preserved. In other words, the graphs are structurally identi-

cal, and one can be transformed into the other merely by relabeling the vertices without altering the
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underlying connectivity pattern. While the concept sounds straightforward, determining whether

two large graphs are isomorphic in an efficient manner remains a challenging computational prob-

lem.

The update rule for the GIN can be formulated as:

h(l+1)
v = MLP(l)

h(l)v +
∑

u∈N (v)

h(l)u

 (2.3)

Where:

h
(l+1)
v is the feature vector of node v at layer l + 1.

N (v) represents the neighbors of node v.

MLP(l) denotes a multi-layer perceptron used at layer l.

The GIN introduces an additional learnable parameter to weigh the importance of self-

features versus neighbor features. This ensures that the GIN can capture subtle structural details,

making it a powerful tool for graph representation learning.

Understanding and recognizing graph isomorphism has profound implications in numer-

ous areas of science and technology. For example, in chemistry, graph isomorphism can be used to

determine molecular similarity, as molecules can be represented as graphs where atoms are vertices

and bonds are edges. Similarly, in computer science, isomorphic graphs might denote equivalent

solutions or states in certain problems. Furthermore, in database search and pattern recognition,

determining graph isomorphism efficiently can aid in retrieving or recognizing specific patterns

amidst a large dataset. However, due to the complexity of the problem, especially with large graphs,

much research has been invested in finding efficient algorithms and heuristic methods to tackle the

isomorphism challenge.

2.2.4 Graph Attention Networks

Graph Attention Networks (GATs) mark a significant evolution in graph neural network

technology by introducing an attention mechanism that allows nodes to dynamically assign impor-

tance to their neighbors’ information. This attention-based approach enables the model to focus

more on relevant features from a neighborhood, enhancing the adaptability and performance of

the network on graph-structured data. GATs address the limitation of conventional graph neural

networks, such as GCNs, which treat all neighbors equally during the aggregation process. By in-
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corporating attention, GATs can assign a weight based on the influence of each neighbor based on

the task at hand, leading to more effective learning outcomes.

The propagation rule for a GAT layer can be described as:

h
(l+1)
i = σ

 ∑
j∈N (i)∪{i}

α
(l)
ij W

(l)h
(l)
j

 (2.4)

Where:

h
(l+1)
i is the feature vector of node i at layer l + 1.

α
(l)
ij represents the attention coefficient between nodes i and j at layer l, indicating the

significance of node j’s features to the update of node i’s features.

W (l) is the weight matrix for layer l.

σ is an activation function, such as the ReLU function.

The computation of attention coefficients involves a self-attention mechanism where a

shared attention function, applicable to all edges, computes the coefficients based on the features of

the nodes at either end of the edge. This process allows GATs to perform feature extraction that is

both context-aware and adaptive, leading to more nuanced representations of nodes based on their

local graph topology.

GATs have demonstrated superior performance on various tasks, including node classi-

fication, graph classification, and link prediction, particularly in scenarios where the relevance of

neighboring nodes varies significantly. The model’s ability to selectively prioritize information

makes it highly effective in capturing the complex dependencies characteristic of graph-structured

data, thereby pushing the boundaries of what is achievable with graph neural networks.

2.2.5 GraphSAGE

GraphSAGE (Graph Sample and AggregatE) is a novel framework designed to efficiently

generate node embeddings for large-scale graphs. Unlike traditional graph neural networks, such

as GCNs, that require the entire graph to be processed simultaneously, GraphSAGE introduces a

more scalable approach by sampling a fixed-size neighborhood around each node and aggregating

their features. This methodology allows GraphSAGE to efficiently deal with graphs of varying

sizes and topologies, including those that evolve over time, by learning a function that can generate

embeddings for unseen nodes based on their local neighborhoods.
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The propagation rule for GraphSAGE can be generalized as:

h
(l+1)
i = σ

(
W (l) · AGGREGATE(l)

(
{h(l)j |j ∈ N (i)}

))
(2.5)

Where:

h
(l+1)
i is the feature vector of node i at layer l + 1.

N (i) denotes the set of neighbors for node i.

AGGREGATE(l) is a function that combines the feature vectors of the sampled neighbor-

hood nodes at layer l.

W (l) is the weight matrix for layer l.

σ represents an activation function, such as the ReLU function.

GraphSAGE’s aggregation functions can vary, including mean, LSTM, and pooling ag-

gregators, which allows the model to be tailored to specific types of graph data and applications.

This flexibility, combined with the efficiency of sampling, makes GraphSAGE particularly suitable

for dynamic graphs and scenarios where real-time embedding generation is crucial.

Moreover, by learning to aggregate information from a node’s local neighborhood, Graph-

SAGE can leverage the structural information inherent in the graph, allowing for powerful repre-

sentations that capture both the features of individual nodes and their relational context within the

graph. This approach has proven effective across a range of tasks, including node classification,

link prediction, and graph classification, particularly in domains where the graph structure is indica-

tive of underlying patterns or relationships, such as social networks, recommendation systems, and

knowledge graphs.

2.2.6 Principal Neighborhood Aggregation

Principal Neighborhood Aggregation (PNA) addresses the need for more nuanced aggre-

gation mechanisms capable of capturing the diverse structural properties within graphs. Diverging

from traditional graph neural networks such as GCNs, which primarily utilize simplistic aggrega-

tion functions such as sum, mean, or max, PNA introduces a multifaceted approach by integrating

several aggregation schemes and a degree-scaling component. This mixture of techniques enhances

the model’s ability to represent the intricate patterns and relationships inherent in graph-structured

data.

The core idea of PNA is to leverage the strengths of multiple aggregation functions simul-

taneously, thereby improving the feature representation of each node by capturing various aspects
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of its neighborhood’s structure and feature distribution. The inclusion of a degree-scaling com-

ponent further refines this process by adjusting the influence of neighboring nodes based on their

connectivity, thus providing a more balanced and informative aggregation outcome.

The general update rule for PNA can be encapsulated as:

h
(l+1)
i = σ

 ∑
agg∈A

δagg ·W (l)
agg · agg

(
{h(l)j |j ∈ N (i) ∪ {i}}

) (2.6)

Where:

- h(l+1)
i denotes the feature vector of node i at layer l + 1.

- A is a set of aggregation functions, such as sum, mean, and max.

- δagg represents a degree-scaling factor associated with each aggregation function, optimizing the

impact of node degrees on the aggregation process.

- W (l)
agg is a weight matrix specific to each aggregation function at layer l.

- σ is an activation function, for instance, the ReLU function.

PNA’s design is particularly effective in graphs where nodes exhibit significant variabil-

ity in their degree distribution. By considering multiple aggregation perspectives and adjusting for

node degree, PNA ensures an accurate representation of each node’s neighborhood, significantly

improving the performance on tasks such as node classification, graph classification, and link pre-

diction.

2.3 Graph Neural Network Frameworks

Support for GNN primitives in popular ML frameworks is increasing. Today, researchers

from the ML community are developing libraries in the form of extensions to frameworks such as

PyTorch and TensorFlow. The two most popular libraries/extensions that implement customized

GNN kernels, as well as provide programming support in the form of APIs, are PyTorch Geomet-

ric (PyG) [58] and the Deep Graph Library (DGL) [186]. PyG is an extension based on top of

the PyTorch library and so only supports PyTorch. On the other hand, DGL provides support for

PyTorch, TensorFlow, and MXNet.

Spektral [72] and Aligraph [221] are two librariesk built on top of TensorFlow, used for

GNN training. GraphNets [16] is a GNN framework from Google, supported using TensorFlow

as the backend. As PyG and DGL bridge both the semantic and performance gaps when devel-
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oping GNN models, they are the most widely used frameworks by both the ML community [214]

and architecture community. [118, 198, 199, 213]. Table 2.1 presents a comprehensive comparison

between PyTorch Geometric (PyG) and Deep Graph Library (DGL), two prominent libraries for im-

plementing Graph Neural Networks (GNNs). Both libraries are actively maintained, with extensive

documentation and a large user community, ensuring robust support for developers and researchers

in the field of graph-based deep learning.

Table 2.1: Comparison between PyTorch Geometric (PyG) and Deep Graph Library (DGL)

Feature/Aspect PyTorch Geometric (PyG) Deep Graph Library (DGL)

Programming Language Primarily Python Primarily Python

Deep Learning Framework Built on top of PyTorch Supports both PyTorch and
TensorFlow

Ease of Use High-level API, easy to use for
beginners

Low-level C++ API available

Performance Efficient and scalable Highly optimized for sparse
operations

Models Available Extensive collection of pre-
implemented GNN models

Newer models only optimized
for PyG

Community and Support Large community, active de-
velopment

Relatively new library with
community beginning to grow

Documentation Extensive documentation with
examples

Comprehensive documenta-
tion

Graph Types Supported Supports heterogeneous and
temporal graphs

Supports heterogeneous
graphs

Scalability Optimized for single-machine,
multi-GPU setups

Designed for distributed train-
ing on multiple machines and
large graphs

Extensibility Easy to extend and contribute Low-level C++ API relatively
difficult to extend

2.4 Accelerators: An Overview

Accelerators are specialized hardware components designed to perform specific computa-

tional tasks more efficiently than general-purpose processors. The primary motivation behind their

design lies in addressing the performance and efficiency bottlenecks encountered in conventional
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computing systems, particularly for workloads that require intensive data processing or have unique

computational patterns. Accelerators are engineered to offload specific tasks from the central pro-

cessing unit (CPU), thereby enhancing the overall system performance and energy efficiency.

2.4.1 Unique Advantages of Accelerators

The distinct advantages of accelerators stem from their specialized architecture, which is

tailored to execute a specific set of operations. This specialization enables several benefits:

• Enhanced Performance: Accelerators can execute certain tasks or algorithms much faster

than general-purpose CPUs due to their optimized hardware design for those tasks.

• Energy Efficiency: By offloading intensive tasks from CPUs, accelerators can reduce overall

power consumption, making them ideal for energy-sensitive applications.

• Parallel Processing Capabilities: Many accelerators, just like GPUs, are capable of han-

dling multiple operations concurrently, effectively leveraging the parallel hardware of the

accelerator.

• Customizability: Accelerators can be customized for the specific needs of an application,

allowing for greater flexibility in handling diverse computational requirements.

2.4.2 Advantages and Disadvantages of Designing Accelerators

While accelerators offer considerable advantages, there are also trade-offs involved in

their design and deployment.

2.4.2.1 Advantages

• Highly Efficient for Targeted Tasks: Accelerators provide optimized performance for spe-

cific applications, such as graphics processing, machine learning, and now, graph computing.

• Scalability: They can be scaled to handle larger workloads more effectively than general-

purpose processors.

• Innovation: The development of accelerators drives technological innovation, particularly in

fields that require high computing power.
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2.4.2.2 Disadvantages

• Limited Flexibility: Being specialized, accelerators are not as versatile as CPUs for general

computing tasks.

• Development Complexity: Designing and implementing accelerators can be complex and

resource-intensive.

• Integration Challenges: Integrating accelerators into existing systems may require signifi-

cant architectural changes and software support.

• Cost: The development and deployment of accelerators can be costly, especially for cutting-

edge designs.

Overall, accelerators represent a critical advancement in computing technology, offering

specialized solutions for a range of emerging applications. In particular, their role in graph com-

puting has opened new avenues for handling complex data structures and algorithms efficiently.

However, the decision to utilize accelerators must consider the balance between their specialized

capabilities and the associated design and integration challenges.
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Chapter 3

Related Work

In this chapter, we review the existing body of work on graph computing. Our initial focus

is on the examination of prior research concerning the benchmarking of graph-based workloads.

Next, we discuss previous work aimed at accelerating graph neural networks.

3.1 Graph Computing Benchmark Suites

Past GPU benchmark suites have provided guidance to GPU architects. To date, GPU

benchmarks fall into one of two categories. They either evaluate general-purpose GPU computing

capabilities [35, 36, 44, 146, 171, 182], or target assessment of the performance of a specific class of

workloads [106, 110, 172]. With the growing popularity of DNN workloads, a new wave of DNN

benchmarks have been developed.

Benchmarking Deep Learning Workloads and Workload Characterization: Early

DNN benchmark suites explored the execution performance of low-level primitives [51, 134], as

well as end-to-end inference and training [2, 41]. Later efforts included a more diverse set of DNN

algorithms, including a broader range of network models and commercial efforts. TBD [220] is

a DNN benchmark suite proposed by Zhu et al. to study DNN training performance on GPUs.

AIBench [63] is an industry-initiated benchmark suite that is focused on industrial AI services.

Mattson et al. [124] proposed the MLPerf training and MLPerf inference suites. MLPerf adopts

ideas from prior DNN benchmark suites to develop an industry-standard DNN-focused benchmark

suite, designed so that new hardware and software optimizations can be evaluated fairly. To date,

MLPerf has primarily focused on DNNs. In terms of architectural characterization, Dong et al. [50]

looked at the architectural implications of CNN training on a GPU. Mojumder et al. [127] profiled
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DNN models trained on an NVIDIA DGX-1 system. However, all these prior workload studies were

limited to DNNs that operate on euclidean data (e.g., images, video and speech). In this thesis we

develop GNNMark. We specifically aim to bridge this gap, providing the architecture community

with an appropriate benchmark suite to study GNN training behavior. We also plan to work with

the MLPerf consortium to integrate our GNN models into their training suite in the future.

Workload Characterization for GNNs: GNNs have recently attracted attention from the

computer architecture community due to their growing popularity in the machine learning domain.

Yan et al. [198] have characterized Graph Convolutional Network (GCN) inference performance,

focusing on aggregation and model update phases. Zhang et al. [213] have also characterized the

inference performance of GNNs. Their work decomposes GNN inference execution into a Scatter-

ApplyEdge-Gather-ApplyVertex (SAGA) pipeline and then analyzes the behavior of each phase.

They also present insights on how to efficiently design a GNN accelerator for inference. While a

benchmark suite is also created as a part of their study, it is designed primarily for inference and is

not available publicly. Most prior GNN studies focused on inference, ignoring the training process

that tends to consume a large number of GPU hours. Also, the models evaluated are only designed

to process homogeneous graphs. Other related work focused on characterizing GNN inference and

designing customized accelerators for that purpose [101,118,199]. In contrast, GNNMark includes

GNN models that work across a wide range of graph data, including spatio-temporal graphs and

heterogeneous graphs. GNNMark also includes multi-GPU implementations of GNNs, making

it suitable for research on GNN training behavior targeting GPUs. The applications included in

GNNMark can also be used to drive inference studies by first training the models to a target accuracy

and then using the pre-trained models to characterize inference. We plan to extend the suite to

support inference studies by providing a set of pre-trained models in the future.

3.2 Prior GNN Accelerators

The cause for a critical computational bottleneck within GNN workloads is the presence

of irregular memory access patterns. Accelerating GNN workloads for large input graphs, especially

those with skewed sparsity patterns, is particularly challenging. Previous accelerator designs have

attempted to hide memory bottlenecks by performing high-level and low-level pipelining [100],

row-remapping [65], generating two distinct implementations for the aggregation and combination

phases [199], and leveraging flexible network topologies [112]. While these enhancements improve

performance for specific GNN workloads on predefined datasets, they fall short in terms of gen-
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Table 3.1: Comparison of prior state-of-the-art GNN accelerators’ support for different graph neural
network models. The table indicates the support provided by accelerator for GCN, GIN, GAT,
SAGE, PNA, and DGN models

Accelerator GCN GIN GAT SAGE PNA DGN

I-GCN [66] ✔ ✔ ✘ ✔ ✘ ✘

AWB-GCN [65] ✔ ✘ ✘ ✘ ✘ ✘

HyGCN [199] ✔ ✔ ✘ ✔ ✘ ✘

EnGN [118] ✔ ✘ ✘ ✔ ✘ ✘

GraphPE [7] ✔ ✘ ✔ ✘ ✘ ✘

GNNerator [170] ✔ ✘ ✘ ✔ ✘ ✘

GCoD [207] ✔ ✔ ✔ ✔ ✘ ✘

ReGNN [37] ✔ ✔ ✘ ✔ ✘ ✘

ReFlip [84] ✔ ✔ ✔ ✔ ✘ ✘

GROW [86] ✔ ✔ ✔ ✔ ✘ ✘

FlowGNN [153] ✔ ✔ ✔ ✔ ✔ ✔

eral applicability across a range of GNN workloads [1]. Table 3.1 illustrates support proposed in

prior studies for various GNN workloads. Table 3.2 further extends Table 3.1 by summarizing the

optimization techniques incorporated by prior GNN accelerators.

I-GCN [66]: I-GCN is a hardware accelerator designed to improve the performance of

GCN inference. One of the primary challenges in accelerating GCNs is the poor data locality and

redundant computation arising from the large size, high sparsity, and irregular non-zero distribu-

tion of real-world graphs. To tackle these issues, I-GCN employs an online graph restructuring

algorithm known as islandization. This algorithm identifies clusters of nodes with strong internal

connections, but weak external ones, which improves on-chip data reuse and minimizes off-chip

memory accesses.

AWB-GCN [65]: Autotuning-Workload-Balancing GCN (AWB-GCN) is a hardware ac-

celerator specifically designed for speeding up GCN inference. Addressing the challenges of pro-

cessing large and unbalanced real-world graphs, AWB-GCN employs three hardware-based auto-

tuning techniques: dynamic distribution smoothing, remote switching, and row remapping. These

techniques enable the system to dynamically adjust the workload distribution across a large number

of processing elements.

HyGCN [199]: HyGCN is an accelerator designed to address the unique computational
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Table 3.2: Comparison of various Graph Neural Network (GNN) Accelerators on optimization
techniques incorporated

Accelerator Kernel
Fusion

Loop
Reordering

Pruning Bank
Mapping

Load
Balancing

I-GCN [66] ✘ ✘ ✔ ✔ ✔

AWB-GCN [65] ✔ ✔ ✘ ✔ ✔

HyGCN [199] ✔ ✔ ✘ ✔ ✔

EnGN [118] ✘ ✔ ✘ ✔ ✔

GraphPE [7] ✘ ✘ ✘ ✔ ✘

GNNerator [170] ✘ ✘ ✘ ✘ ✘

GCoD [207] ✘ ✔ ✔ ✘ ✔

ReGNN [37] ✔ ✘ ✘ ✘ ✔

ReFlip [84] ✘ ✘ ✘ ✘ ✔

GROW [86] ✘ ✔ ✘ ✘ ✔

FlowGNN [153] ✔ ✘ ✘ ✔ ✔

challenges arising from the hybrid execution patterns of GCNs. These patterns comprise a dynamic

and irregular aggregation phase, and a static and regular combination phase. The design of HyGCN

is motivated by a characterization of GCN execution patterns on an Intel Xeon CPU. The accelerator

employs a new programming model to exploit fine-grained parallelism and features two efficient

processing engines tailored to handle the irregularity in the aggregation phase and the regularity

in the combination phase. These engines are optimized for various levels of parallelism and data

reusability.

EnGN [118]: EnGN is an accelerator architecture that addresses the substantial compu-

tational and memory overhead present within GNN workloads. EnGN focuses on accelerating the

three key stages of GNN propagation by abstracting them as common computing patterns. The ar-

chitecture employs a ring-edge-reduce (RER) dataflow and corresponding RER PE-array to manage

the poor locality associated with sparsely and randomly connected vertices. Additionally, EnGN

utilizes a graph tiling strategy to fit large graphs into the accelerator’s memory.

GraphPE [7]: The GraphPE architecture incorporates dedicated hardware units engi-

neered to manage the irregular data movement typical of graph computations while also ensuring

high computational throughput for GNN models.

GNNerator [170]: GNNerator is an accelerator for GNNs, designed to address the com-
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putational challenges arising from the dual nature of GNN operations: dense and regular com-

putations for feature extraction, and sparse and irregular computations for message passing be-

tween nodes. GNNerator employs heterogeneous compute engines specifically optimized for these

contrasting computational patterns. The paper also introduces the concept of feature-blocking, a

dataflow technique that adjusts the trade-off between irregular and regular memory accesses, in-

creasing computational efficiency during both feature extraction and aggregation stages.

GCoD [207]: GCoD is a hardware-software co-designed framework aimed at addressing

the computational inefficiencies associated with GCNs when applied to large, sparse and irregular

real-world graphs. In terms of algorithmic design, GCoD employs a ”split and conquer” train-

ing strategy that locally polarizes graph densities, resulting in adjacency matrices with enhanced

regularity and thus, achieves good acceleration. On the hardware side, a specialized two-pronged

accelerator is developed, featuring separate engines to process denser and sparser graph workloads,

thereby further improving utilization and acceleration efficiency.

ReGNN [37]: ReGNN is a GNN accelerator aimed at eliminating computational and com-

munication redundancy inherent in traditional GNNs. ReGNN is built on a hardware-software co-

design approach incorporating a dynamic redundancy-eliminated neighborhood message-passing

algorithm. ReGNN is a configurable, pipelined architecture adaptable to various GNN variants

without compromising accuracy.

ReFlip [84]: ReFlip is a GCN accelerator that aims to improve the overall efficiency of

both regular neural network computations and irregular graph analytics. ReFlip employs a unified

architecture based on Processing-in-Memory (PIM) [94] and features a crossbar structure. This uni-

fied architecture is augmented by novel algorithm mappings that maximize performance by lever-

aging the inherent parallelism of crossbar structures.

GROW [86]: GROW is an accelerator for Graph Convolutional Neural Networks (GCNs),

designed to optimize the two primary stages of GCNs—aggregation and combination—that have

distinct dataflow. GROW utilizes Gustavson’s algorithm to implement a row-wise product-based

sparse-dense GEMM accelerator. By co-designing software and hardware, GROW claims to achieve

a balance between data locality and parallelism.

FlowGNN [153]: FlowGNN introduces a dataflow architecture tailored for the accelera-

tion of GNNs that utilize message-passing mechanisms. The FlowGNN architecture is scalable and

supports a broad spectrum of GNN models, featuring a configurable dataflow that simultaneously

computes node and edge embeddings as well as facilitates message passing, making it universally

applicable across different models. A significant advantage of FlowGNN is its ability to perform
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GNN inference without any prior graph processing.

LISA [115]: LISA is a compiler-oriented approach to map computations of GNNs on

Coarse-Grained Reconfigurable Arrays (CGRA) spatial accelerators. CGRAs, known for their po-

tential to enhance computational performance and energy efficiency, require sophisticated com-

piler designs to unlock their full capabilities. LISA introduces a solution by leveraging GNNs

to analyze and interpret the structural characteristics of dataflow graphs (DFGs), which represent

application-specific computations. This analysis facilitates the automatic identification of near op-

timal mappings for DFGs onto new accelerator architectures, considering both node placement and

dependency routing. The integration of a simulated annealing-based mapping strategy, informed

by GNN-generated insights, ensures that the mapping process is both efficient and effective. LISA

dramatically reduces the time required to generate high-quality mappings for spatial accelerators,

thereby accelerating the development cycle and enhancing the performance of computing systems.
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Chapter 4

GNN Workload Characterization

Owing to the energy efficiency and high-performance capabilities of GPUs, GPUs are a

natural choice for accelerating the training of GNNs. This forms the core motivation to understand

the architectural and system-level implications of training GNNs on GPUs. Previously to our work,

no benchmark suite existed to examine the architectural implications of GNN training workloads.

In this dissertation , we address this need by presenting GNNMark [14], a feature-rich

benchmark suite that encompasses the diversity present in GNN training workloads, datasets and

GNN frameworks. Our benchmark suite consists of GNN workloads that utilize various graph-

based data structures, including homogeneous graphs, dynamic graphs, and heterogeneous graphs

commonly used in a number of application domains that we mentioned in Section 2.2. We use

this benchmark suite to explore and characterize GNN training behavior on GPUs. We study a

variety of aspects of GNN execution, including both compute and memory behavior, highlighting

major bottlenecks observed during GNN training. At the system level, we evaluate multiple metric,

including the scalability of training GNNs across a multi-GPU system, as well as the sparsity of data

encountered during training. The insights derived from our work can be leveraged by both hardware

and software developers to improve both the hardware and software performance of GNN training

on GPUs. The contributions of this part of the thesis include:

1. GNN training-focused benchmark suite: We deliver an open-source benchmark suite named

GNNMark (https://gitlab.com/GNNMark/gnnmark), designed to characterize the

training behavior of GNNs on GPUs. Our suite includes a diverse set of popular GNN mod-

els that the machine learning community has developed. The workloads span seven different

application domains and three different types of graph-based data types.
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2. Architecture-level characterization of GNNMark: We characterize the workloads in GN-

NMark, considering their architectural implications during the training process on a GPU. We

are the first to provide a detailed execution time breakdown of different operations executed

during GNN training and identify the major bottlenecks. We find that these workloads are

much more diverse than typical DNN training workloads. GNN execution is highly input

data and model dependent. We find that integer operations play a critical role, a factor that

has been relatively ignored in DNN training studies on GPUs. We also observe significant

sparsity during GNN training. This can potentially be leveraged to train larger graphs on a

single GPU. We also consider multi-GPU support in the suite, enabling scaling studies of

GNNs across multi-GPU systems.

3. Recommendations to improve GPU architectures: We present insights drawn from our de-

tailed characterization and suggest changes to improve GPU architectures and system design

so that GNNs can be trained efficiently.

4.1 Motivation for Characterizing GNN Workloads

Deep Neural Networks (DNNs) have revolutionized numerous areas, such as image clas-

sification [53,160], speech recognition [49,141] and autonomous systems [121,126]. Notable DNN

architectures such as Convolutional Neural Networks (CNNs) [61] and Transformers [183] primar-

ily operate on Euclidean data. This type of data, inherently 1D or 2D, includes images and speech

datasets [89]. Yet, much of the data we encounter in the real world is non-Euclidean in nature [23],

encompassing structures of molecules, social networks, sensor systems, and manifolds. Traditional

DNNs, designed for Euclidean data, often fall short in efficiently processing non-Euclidean data

due to challenges in directly applying operations, such as convolutions [23, 161].

To bridge this deficiency, GNNs [102, 193] have been developed, specializing in non-

Euclidean data training. For instance, Pinterest employs a GNN model, PinSAGE [205], for its

recommendation algorithms, while Twitter researchers utilize GNN models with temporal graph

data [152]. Similarly, the Drug Repurposing Knowledge Graph (DRKG) [88] adopts GNN models

to research the applications of existing drugs for novel diseases.

With GPUs establishing themselves as the go-to platform for DNN and GNN training

due to their advanced capabilities, many leading GNN frameworks, for example, the Deep Graph

Library [215] and PyTorch Geometric [58], have integrated GPU training support. As GNNs con-
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tinue to surge in popularity, there’s a pressing need for optimizing GPU platforms to train them.

Thoroughly analyzing GPU behavior during GNN training is paramount. By dissecting the myriad

of GNN operations and their execution during training, GPU architects can pinpoint and address

performance bottlenecks. Aspects such as GNN training scalability on multi-GPU setups and the

presence of data sparsity during training can be tapped into for training large graphs, especially

those surpassing a single GPU’s memory capacity [119, 149, 159]. A thorough analysis of GNN

training workflows will enhance our understanding of the computational and memory constraints

associated with running GNN workloads on GPUs.

4.2 Prior Work on GNN Characterization

Prior work on characterizing GNNs has focused primarily on the inference behavior

for GCNs [198] or targeted a limited set of GNN models [213]. Both model and dataset diver-

sity [213] have not been considered by these studies. By dataset diversity, we mean different types

of graphs, including homogeneous, heterogeneous, knowledge, and dynamic graphs (explored in

detail in Section 4.3). Model diversity implies different types of GNN models, such as Graph

Transformers, Spatio-Temporal GNNs, and LSTM based GNNs. In previous benchmarking efforts,

GNN inference has been the primary target for characterization studies [198, 213]. Popular bench-

mark suites for DNN training, such as the MLPerf Training Suite [123], Training Benchmarks for

DNN (TBD) [220], DNNMark [52], Fathom [2], and DawnBench [41], do not consider GNNs as

part of their workloads and deal exclusively with DNNs that deal with euclidean data. To compre-

hensively characterize the execution behavior of GNN training on GPUs, we need a benchmark suite

that includes diverse GNN models that are trained on diverse datasets. Currently, no such bench-

mark suite exists. To fill this gap, we develop GNNMark, a collection of representative workloads

that can be used by the computer architecture community to study the execution of GNNs on GPUs.

We then analyze the workloads in the GNNMark benchmark suite, specifically focusing on their

behavior during GNN training on a GPU. Apart from the fact that prior GNN workload charac-

terization studies primarily focused on inference, we chose to focus on training, given that GPUs

remain the best platform in terms of performance for GNN training.

34



4.3. INPUT GRAPH TYPES

4.3 Input Graph Types

GNNs have evolved over time, and we find that each variation of GNN is typically as-

sociated with a distinct form of graph data [193]. In our examination of GNNs, we identify three

primary classifications of graph data:

1. Homogeneous Graphs: A homogeneous graph contains nodes and edges of a single type.

For example, social network graphs are typically homogeneous, where each node represents a

user, and an edge can represent if that one user follows another. Homogeneous graphs can be

directed (e.g., following a user on Twitter) or undirected (e.g., adding a friend on Facebook).

Another notable collection of homogeneous graph datasets that are used to evaluate GNN

models are citation datasets (e.g., Cora, PubMed, Citeseer) [102].

2. Heterogeneous Graphs: A heterogeneous graph contains nodes and edges of multiple types.

A widely used form of a heterogeneous graph is found in recommendation generation scenar-

ios. For example, in a dataset designed to recommend music to users, the graph will consist of

two types of nodes: i) music nodes and ii) user nodes. The edges will correspond to different

interactions between the user and a music piece. In addition, edges may contain additional in-

formation such as ratings or like/dislike attributes. Knowledge graphs that are used to model

relations between an object and entities are another form of a heterogeneous graph – e.g.

when users search for a famous celebrity on Google (an object).

3. Dynamic Graphs: A dynamic graph is a special type of graph where the graph itself, as

well as its properties, can evolve over time. Many real-world graphs, such as social-network

graphs [152], traffic data graph [208] and communication-network graphs, are dynamic [56].

Note that dynamic graphs can be either homogeneous or heterogeneous. For example, if we

take a homogeneous social network graph, where nodes represent people and edges represent

whether there is a relationship, the number of relations a person has or the relations between

two people can change over time. Another common use case of dynamic graphs is to model

traffic data as a dynamic graph and use it for traffic forecasting and prediction [48].

4.4 Benchmark Suite Design

Characterizing the behavior of GNN training on a GPU requires a set of representative

workloads to cover the wide variety of GNNs [193, 214]. The variants should include GNNs
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Abbv GNN Model Application Domain Graph Input Type

PSAGE PinSAGE Recommendation Heterogeneous Graph

STGCN Spatio Temporal GCN Traffic Forecasting Dynamic Graph

DGCN Deep GCN Molecular Property Predic-
tion

Homogeneous Graph

GW GraphWriter Text Generation Heterogeneous Graph

KGNN k Graph Neural Networks Protein Classification Homogeneous Graph

ARGA Adverserially Regularized
Graph Autoencoder

Node Clustering Homogeneous Graph

TLSTM Tree Long Short-Term
Memory Networks

Sentiment Classification Homogeneous Graph

Table 4.1: Workloads in GNNMark Benchmark Suite.

used across multiple application domains, including recommendation systems, classification of

molecules, traffic forecasting, etc. The representative suite should also include models that con-

sider different classes of real-world graphs, including knowledge graphs, heterogeneous graphs,

and dynamic graphs. In addition, multi-GPU GNN training should be supported to evaluate the

efficacy of training GNNs on multi-GPU systems.

To satisfy all the above-mentioned criteria, we offer GNNMark, a benchmark suite de-

signed for studying the behavior of GNN training on GPUs. Similar to benchmark suites that target

DNN training, such as TBD [220] and MLPerf [123], we curate our benchmark suite from open-

source publicly available implementations of GNN models. As PyTorch Geometric (PyG) and Deep

Graph Library (DGL) are the main frameworks employed for developing GNN models by the ML

community, we use models developed using these frameworks. Since both of these frameworks sup-

port PyTorch, we have chosen models developed in PyTorch. The specific models chosen for this

suite, along with their associated application domains and datasets, are summarized in Table 4.1.

Below, we provide more details about each GNN model.

PinSAGE: GNNs that operate on heterogeneous knowledge graphs can be used for rec-

ommendation tasks. These are commonly used in social networks. PinSAGE [205] is one such

GNN model that has been developed at Pinterest. Since the original PinSAGE model is not publicly

available, we use the implementation that has been published by the developers of DGL. PinSAGE

is an improvement upon the GraphSAGE model [74] for training on large graphs. It uses a random

walk mechanism [188] during aggregation to identify the importance of a node in the graph without
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Abbv Datasets # Node # Edge

PSAGE Nowplaying (NWP) [209] 22.9M 1.9M

Movielens (MVL) [75] 1.9M 9.7K

STGCN LA [208] 207 325

PEMS Bay (PEMS) [208] 1722 2694

DGCN MOLHIV [83] 1.04M 1.1M

MOLTOX [83] 145K 151K

GW AGENDA [105] 885K 2.57M

KGNN Proteins (PROT) [96] 43K 162K

ARGA
Cora [202] 2K 10.5K

CiteSeer (CSEER) [202] 3.3K 9.2K

PubMed (CSEER) [202] 19.7K 88.6K

TLSTM Stanford Sentiment Treebank (SNTM) [164] 318K 310K

Table 4.2: Workloads in GNNMark Benchmark Suite.

the need to process the entire graph. This effectively allows a user to train a model on graphs that

do not fit in GPU memory.

Spatio-Temporal Graph Convolutional Network: Traffic forecasting is an important

problem that falls into the domain of time-series prediction and uses dynamic graphs. This task

is highly relevant for use in urban areas where traffic control and guidance are required. Solving

this problem using conventional Euclidean-based DNNs is challenging because of the nonlinearity

involved in traffic data [133]. One approach to deal with nonlinearity is to represent the problem as

a graph and then apply depth-wise convolutions on the graph. Spatio-Temporal graph Convolutional

Networks (STGCN) [208] represent one such model that has been proposed to solve the problem

of traffic forecasting. We include an STGCN to represent a GNN model that deals with dynamic

graphs.

DeepGCNs: One of the key challenges with the original GCN models, such as the one

proposed by Kipf and Welling [103], is that increasing the depth of the model does not improve

the accuracy of the model. This is due to the vanishing gradient problem [80], which has made

implementing deep GCNs challenging. Therefore, researchers have developed mechanisms to train

deeper GCNs [111], using ideas borrowed from DNN research, such as residual layers and skip-

connections used in models such as ResNet [78]. DeepGCN is a novel GCN architecture that
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allows GCNs to have more layers. Additional layers in a GCN can significantly improve training

accuracy [111], so we include it in our study. Specifically, we use a DeepGCN model and train it to

perform graph property prediction, a common task in molecular property prediction.

GraphWriter: Automated generation of text from a knowledge graph to form meaningful

and coherent sentences is an open and challenging problem [90]. Text encoding models, such as the

popular Transformer model [183], cannot be directly applied to a knowledge graph as they do not

work with non-euclidean data. Therefore, ML researchers have developed GNN-based Transformer

models for this task. Graphwriter [105] is one such novel GNN-based Transformer model designed

to operate on knowledge-graphs for text generation.

k-GNNs: Most GNN models are one-dimensional in nature and cannot effectively capture

any higher-order information, such as the properties of subgraphs, within the graph. As a result,

they fail the graph isomorphism test proposed by Weisfeiler and Lehman [189] (WL algorithm).

The WL algorithm is a test used to determine the expressiveness power of a GNN by testing if an

algorithm is able to distinguish whether two graphs are isomorphic or not. Two graphs are said

to be isomorphic if they have the same number of vertices, edges, and connectivity. Therefore,

researchers have developed higher-dimensional hierarchical GNNs, called k-GNNs (where the k

stands for the dimension), which can capture properties of subgraphs [128]. This enables GNNs

to perform close to the k-WL graph isomorphism test [128]. We include two variants of k-GNNs,

(KGNNL and KGNNH to denote a lower and higher dimensional version of k-GNN, respectively)

and use them to perform classification of protein molecules. The primary reason we include this

workload in our suite is to study how application characteristics and behavior change as we move

towards higher-dimension GNNs.

Adversarially Regularized Graph Autoencoder: Generative Adversarial Networks (GANs)

are gaining popularity due to their ability to learn with limited amounts of data [144]. Due to this

property, GAN-based architectures are also being explored for GNNs. An Adversarially Regu-

larized Graph Autoencode (ARGA) [143] is one such GNN-based GAN model that is proposed

for graph embedding. ARGA has an encoder-decoder architecture where the encoder is trained to

form a compact representation of a graph, and the decoder is trained to generate the graph struc-

ture. The model is designed to perform node clustering, which is an unsupervised learning task, on

real-world graphs. ARGA employs this encoder-decoder architecture within a GAN framework, so

that it can successfully learn the low-dimensional features of the graph from the high-dimensional

graph features. This process is referred to as graph embedding [28]. We include ARGA as a rep-

resentative GAN-based GCN to further increase the diversity of our benchmark suite. We train
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ARGA to perform node clustering on real-world homogeneous graphs, such as Cora, PubMed, and

CiteSeer [103].

Tree-LSTM: Sentiment classification is an important task in the Natural Language Pro-

cessing (NLP) domain. Tree Long Short-Term Memory Networks (Tree-LSTMs) [173] are one

group of models developed for this task. In contrast to the linear model used in an LSTM, Tree-

LSTMs use a tree-structured network topology and can outperform linear LSTMs in the sentiment

classification task [87, 173]. The Tree-LSTM method implemented in DGL uses the idea of batch-

ing. The basic idea of batching is to collect smaller graphs that are part of the dataset and convert

them into a batched larger graph. We include the Tree-LSTM model in GNNMark to study how

batching multiple small graphs to a larger graph impacts the behavior of an application.

4.5 Profiling Methodology

4.5.1 Experimental Platform

To demonstrate the utility of GNNMark, we use an NVIDIA V100 [139], a commonly

used GPU for running neural network training. V100 is part of the NVIDIA Volta family of GPUs.

Our test system is equipped with an Intel(R) Xeon(R) CPU E5-2630 CPU that operates at a fre-

quency of 2.4GHz. The GPU has 80 Streaming Multiprocessors (SMs) and is rated to deliver 14

TFLOPS of single-precision performance. The GPU memory uses HBM2 with 16 GB capacity and

bandwidth of 900 GB/s. The combined L1 cache/shared memory/texture cache has a capacity of

128 KB and is private to each Streaming Multiprocessor (SM). The L1 memory is backed by a 6.14

MB L2 cache, which is banked and shared across all SMs.

For our multi-GPU experiments, we use 4 V100 GPUs on a node equipped with Intel(R)

Xeon(R) E5-2686 v4 2.4GHz CPUs, hosted on Amazon AWS EC2. Each GPU is interconnected

using NVIDIA NVLink technology, providing a total of six links, for an aggregate bandwidth of

300 GB/s. Both the single-GPU and multi-GPU systems used in our experiments run CUDA 10.2,

cuDNN 7.6.5, and PyTorch 1.5.0. The workloads included in GNNMark use either DGL version

0.5.2 or PyTorch Geometric 1.6.1.

Since multi-GPU training has been shown to improve the performance of DNN train-

ing [127], we also look at how well GNN training can scale across multiple GPUs. GNN training

can be sometimes be limited by GPU memory capacity, especially given the continual growth in the

size of the input graph [91]. One approach to counter this problem is to compress the data trans-
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ferred from the CPU to the GPU and store the compressed data in GPU main memory. This is only

possible if the data transferred is highly sparse [149]. Therefore, we also characterize sparsity levels

of the data transferred between the CPU and GPU during GNN training in our suite.

4.5.2 Profiling Tools

We use several tools for collecting the metrics of interest. For the kernel-level charac-

teristics, such as cache statistics and comparisons between compute versus memory behavior, we

use the NVIDIA nvprof profiler (version 10.2) [22]. Similar to DNNs, GNNs typically launch the

same kernel many times during training. Therefore, when profiling and collecting hardware perfor-

mance counters using nvprof, we profile the same kernel for either fifty kernel invocations or for

one epoch, whichever is shorter. However, nvprof does not provide any mechanism to collect the

memory divergence behavior of a workload. Therefore, we use the NVBit framework [184] (ver-

sion 1.4), which is a binary instrumentation tool to collect the memory divergence information at a

kernel level. To collect the sparsity of the data transferred from the host to the device during GNN

training, we modified the PyTorch source code to collect this information.

4.5.3 Metrics of Interest

Characterizing the behavior of GNNs requires an understanding at both the architectural

level and the system level. In this work, we profile and collect the following metrics:

1. Ratio of time spent in different operations: Prior work on classifying the phases of GNN

execution have categorized GNN execution into two phases: i) aggregation and ii) update

phases [198]. While classifying into these two phases is beneficial for machine learning

purposes, we believe that architectural studies can be guided by a lower level of abstraction

(i.e., operations), which has been proposed by Adolf et al. [2]. In our profiling experiments

for GNN, we observe commonly used operations across various GNN workloads, such as

sparse matrix GEMM operations (spgemm), scatter and gather operations, reduce operations,

embedding operations, index selection operations, sorting operations, and element-wise op-

erations. These operations may be embedded within one or multiple kernels within GNN

training workloads. Understanding the time spent in these different operations and how they

vary across different datasets for the same model can shed insight into where the majority of

the execution time is actually spent during GNN training on a GPU.
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2. FLOPS and Arithmetic Intensity Analysis: To understand how well the GPU can handle

GNN training, it is important to analyze the arithmetic intensity and count the number of

floating point operations (FLOPS). Arithmetic intensity (AI) is defined as the ratio of the

total number of floating point operations performed to the ratio of data transferred (in bytes).

AI can be used to gauge the data reuse of an algorithm. A higher AI is better since it implies

more computations are performed for every byte of data. Analyzing the FLOPS vs AI shows

whether a workload is mainly compute or memory bound.

3. Stall Analysis: To improve the performance of GNNs on GPUs, GPU application developers

need to have an understanding of major stalls incurred during GNN training of different GNN

workloads. Such an understanding of stalls at an operation level can be helpful to understand

the performance of each aforementioned operation.

4. Cache behavior: While not as important as they are for CPUs, caching can still benefit GPU

applications with high spatial and temporal locality. Therefore, having a basic understanding

of the hit rates of different levels of the cache is important. Another key characteristic relevant

to caches is memory divergence. Memory divergence demonstrates the scattered memory ac-

cess pattern of a given operation. The memory divergence of a single transaction is calculated

by the number of unique cache lines that are touched by a warp. For example, if each of the

32 threads in a warp accesses a different cache line, then the divergence is 32. A scattered

memory access pattern i.e., where threads in a warp end up accessing different cache lines,

is detrimental on GPUs as the memory transactions cannot be coalesced. This, in turn, leads

to serialization and can hurt performance. It is well known that memory divergence hurts

the performance of typical graph workloads such as Breadth First Search and PageRank [35].

Therefore, it is essential to understand the level of memory divergence within a broader class

of GNN workloads.

5. Sparsity during GNN training: Sparsity of the data that is transferred between the CPU and

the GPU during training can be leveraged to use optimizations such as DMA compression as

proposed by Rhu et al. [149]. Therefore, in this work, we also aim to understand the sparsity

and compressibility during GNN training.
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Figure 4.1: Execution breakdown, reported as the percent of total execution time, for individual
operations across the different workloads of GNNMark.

4.5.4 Multi-GPU Implementations

We also include multi-GPU versions of each workload in GNNMark to enable users to

study the scalability of GNN training on multi-GPU systems. The multi-GPU implementations

are built on the PyTorch Distributed Data Parallel (DDP) method to train GNNs across

multiple GPUs, exploiting data-level parallelism. In practice, DDP has been shown to scale well on

up to 256 GPU nodes [114] for DNN training.

4.6 Benchmarking Results

4.6.1 Execution Time Breakdown

We start our analysis by breaking down the time spent in the different GNN operations

across the different workloads in our suite. Similar to DNNs [2], GNN training can be broken down

into layers or operations. Prior work divided GNN training into two phases: i) an aggregation phase,

and ii) an update phase [198]. While this division is appropriate when looking at GNNs from an

machine learning perspective, we believe that deeper insights are needed to fully characterize their

behavior. Therefore, we work at the abstraction level of individual operations [2].

We identify a common set of operations performed during GNNMark execution. These

operations include general matrix multiply (GEMM), sparse matrix-matrix multiplication (SpMM),

convolutions, scatters, gathers, reductions, index selection, sorting, and element-wise operations.

Element-wise operations are operations that operate on individual elements of a tensor and perform

operations such as multiplication of all elements in the tensor by a scalar, changing the sign of all

elements in the tensor, or adding two tensors of similar dimensions.
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Figure 4.1 shows a breakdown of the percentage of time spent in individual operations

across the different workloads of GNNMark. Figure 4.1 illustrates the percentage breakdown of

operations varies significantly across workloads. For instance, STGCN, a spatio-temporal GNN, is

dominated by 2D convolution operations (60% on average), while DGCN is dominated by element-

wise operations (31% on average).

The execution time breakdown across operations in a GNN differs greatly from the mix

in a typical DNN. Across all the workloads, we observe that only 25% of the execution time is

spent executing GEMM and SpMM operations. This is in stark contrast to the mix of operations

commonly found in DNN workloads, where GEMM (convolutional layers and fully-connected lay-

ers) dominate the execution [51]. We find that GNN training also differs significantly from GNN

inference workloads [198], where GEMM operations are reported to consume more than 50% of

the execution time.

Other common operations, such as sorting, index selection, reductions, and scatter-gather

operations, account for 20.8% of the total execution on average. These operations are primarily used

in the graph’s aggregation phase, where the nodes exchange information with one another before

updating the feature vectors.

PSAGE, when trained on the MVL dataset, spends 20.7% of its execution on sorting

and only 7.0% of the time on reductions, whereas ARGA (using the Cora data) spends 23% on

reductions and only 6.1% on sorting. This great diversity and variety of tasks in GNN training

present challenges to architects designing customized accelerators for GNN training, given that

accelerators are typically designed to optimize only for a single set of operations.

In contrast to typical DNN workloads, GNN workloads tend to be more input data-

dependent. For PSAGE, the percentage of time spent in element-wise operations is much higher

when training on the (NWP) dataset (78%), versus training on the (MVL) dataset (36%). This is

because, when training on the NWP dataset, the feature vectors are 10× larger than when training

on the MVL dataset. As element-wise operations operate on each value of the input feature vector,

the time spent executing these operations becomes more dominant when graphs with larger input

features are used.

GNN Execution Characteristics: Our performance analysis shows that GNN training workloads

exhibit more diverse behavior as compared to DNN training workloads. Each model’s characteris-

tics can differ vastly from others. Even the same GNN model can exhibit different characteristics

depending on the input graph type. In addition, execution hot spots are no longer limited to convolu-
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tion and GEMM operations. We find operations such as reductions, scatter, gather and sorting also

need to be optimized. The solution of attaching a single-purpose accelerator to primarily accelerate

GEMM operations [147] during DNN training may not work well for GNN training.

4.6.2 Instruction Mix and GFLOPS/GIOPS Analysis

Another aspect of GNN training behavior is the dynamic instruction mix present in dif-

ferent workloads. As shown in Figure 4.2, integer instructions play a larger role than floating-point

instructions across all workloads. On average, 64% of the executed instructions are integer (int32)

instructions, whereas only 28.7% are single-precision floating point (fp32) instructions. The only

workload where this trend is reversed is in GraphWriter (GW). This is because, in GW, a majority of

the time is spent on GEMM and SpMM operations (as seen in Figure 4.1), which work on fp32 data.

While improving the performance of fp32 instructions has received much attention, int32 instruc-

tions have not received the same. Given that int32 instructions dominate GNN execution during

training, improving the performance of integer math on a GPU is a critical factor when trying to

accelerate GNN training.

Figure 4.3 presents the number of GFLOPS and GIOPS executed by our workloads in

GNNMark. We observe that the average GFLOPS rate is 214 GFLOPS, and the average GIOPS

rate is 705 GIOPS. The observed average GFLOPS rate is much lower than the theoretical max

GFLOPS of the V100, which is 14 TFLOPS for fp32 arithmetic [139] (the V100 specs do not

mention the peak theoretical GIOPS. We believe it to be close to the peak theoretical GFLOPS). GW

has the highest fp32 performance of 1.99 TFLOPS. Being a transformer-based ML model, GW can

effectively use most of the parallel resources on a GPU [183]. We also observe that, while graph

batching has been proposed to improve performance in DGL, TLSTM is still able to achieve only 74

GFLOPS.

The average IPC measured across all the workloads was found to be 0.55, which reflects

the memory-bound nature of the workloads. When comparing the GFLOPS and GIOPS of different

operations, we observe that the GEMM operations typically have a higher GFLOPS (in the mid

300s) as opposed to other operations, such as reductions, scatters, and gathers that have lower

rates (in the 100 GFLOPS/GIOPS range) suggesting a very low overall GPU utilization. Given that

these operations can dominate the execution time, it is important for both hardware and software

developers to focus on improving the performance of these operations.
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Instruction Set Usage Summary: Our analysis reveals that, during GNN training, execution is

dominated by integer operations. Thus, to accelerate GNN training on either GPUs or accelerators,

int32 arithmetic performance will be key. The overall performance in terms of GFLOPS/GIOPS for

GNNs is relatively low compared to the peak performance of the hardware. This suggests that GNN

training is primarily memory-bound. Given that operations such as reductions, scatters, gathers, and

sorting can occupy a good chunk of the execution time during GNN training, it is important for both

hardware and software developers to focus on improving the performance of these operations.

4.6.3 Stalls and Cache Analysis

Developing a comprehensive understanding of major stalls in the GPU hardware during

GNN training can help guide architectural design decisions when tuning the performance of these

workloads. Given that caches can greatly improve the performance of GPU applications, it is also

important to look at their efficiency in the context of GNN training. In Figure 4.4, we provide a

distribution of different types of stalls observed in GNN training. We find that execution is stalled

primarily due to Memory Dependency, Execution Dependency, and Instruction Fetch. The high per-

centage of Memory Dependency stalls (34.3% on an average) suggests that the memory subsystem

is inefficient in serving data read requests to the GPU cores. From Figure 4.5, we observe that GNN

workloads have an extremely low L1 D-cache hit rate on the V100 (a mere 15%, on average), which

is the primary reason for these stalls.

We also analyze the impact of divergent load instructions. The load instructions associated

with a warp are considered divergent if they access more than one cache line (a line is 128B on

the V100). Memory divergence can impact the performance of typical graph workloads, such as

Breadth First Search and PageRank [35]. Therefore, it is important to characterize the degree of

memory divergence present during GNN training.

Of all the load instructions, we observe 32.5% of load instructions exhibit divergence

across different GNN training workloads. This percentage is large and is highly correlated with the

resulting low L1 D-cache hit rates. While the larger L2-cache (6MB) on the V100 fares significantly

better with a 70% hit rate on average, the inability of the L1 D-cache to effectively hold the working

set can put pressure on the L2 cache to satisfy the memory requirements. Across the different

operations, we observe that GEMM, SpMM, and GEMV have poor locality (i.e., a low L1 D-cache
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Figure 4.2: Breakdown of fp32 vs. int32 instructions across the different workloads in GNNMark.
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Figure 4.3: GFLOPS and GIOPS across the different workloads in GNNMark.

hit rate, less than 10% on average). The L1 D-cache hit rates of other operations, such as indexing,

scatters, gathers and sorting, are also low (below 15%, on average).

The high percentage of Execution Dependency stalls (i.e., 29.5% of the stall cycles on an

average) points to the fact that, across the entire set of workloads, there are many dependencies be-

tween instructions in a warp, which results in low instruction-level parallelism. Microarchitectural

enhancements to support out-of-order execution in the GPU pipeline [70] can potentially accelerate

GNN training.

Surprisingly, Instruction Fetch stalls are also significant (21.6% on average). This is due
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Figure 4.4: Stall breakdown across operations in GNNMark.

to two reasons. The first is that the instruction cache is ineffective in caching all the instructions.

Although the V100 architecture has a new 12KB L0 I-cache that is backed by a larger 128KB L1

I-cache, it seems to not be highly effective in caching all instructions during kernel execution. The

second reason is loop unrolling techniques [131], which are used to improve the performance of

a GPU kernel, can negatively impact the instruction cache hit rate and increase the stalls due to

instruction fetching [45].

In Figure 4.4, it is evident that scatter and gather operations, along with index selection

operations, exhibit a higher frequency of stalls in comparison to GEMM, particularly for commonly

utilized GNN operations (notably, Conv2D for STGCN and BatchNorm for DeepGCN). The pri-

mary reason for this is the irregular memory access patterns demonstrated by both scatter and gather,

as well as index selection operations, which lead to memory dependencies.

Takeaways: Our analysis of the stalls during GNN training shows that stalls due to Memory De-

pendency, Execution Dependency, and Instruction Fetch can be significant. While GPU architecture

research has focused on removing the first two types of stalls, improving the performance of instruc-

tion fetching has been neglected. Therefore, architects and compiler developers should focus on

developing techniques to improve instruction fetch to optimize the performance of GNN training.

GNN training also suffers from a high degree of L1 D-cache misses and a significant

number of divergent load instructions across all operations. The extremely high L1 D-cache miss

rates suggest that caching is not effective for GNN workloads. We envision two potential solutions
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Figure 4.5: L1-D and L2-cache hit ratios, and divergent load ratios for GNNMark workloads.

to alleviate this problem. The first is to employ half-precision-training for GNN training, which

uses only 16-bit data instead of 32-bit data, thus can significantly reduce the L1 D-cache miss rates.

Alternatively, L1 cache bypassing solutions [194, 195] can be explored to alleviate this problem.

Among all the load instructions, 32.5% exhibit divergence across various GNN workloads.

4.6.4 Sparsity during GNN training

Training sparsity refers to the zero values (as a percentage of all values) that are trans-

ferred during CPU-to-GPU memory copies during the GNN training process. For characterizing

the average sparsity, we report the percentage of zero values observed in CPU-to-GPU data trans-

fers during GNN training. From Figure 4.6, an average sparsity of 43.2% was observed during GNN

training. This suggests that compression techniques could be employed. Rhu et al. [149] proposed

using compression to alleviate the problem of training large DNN models on a GPU. While GNN

models are smaller than conventional DNN models (e.g., Resnet-50 is 50-layers deep, whereas most

GNNs today have fewer than 10 layers), the input graph can occupy a significant portion of GPU

memory (up to 90% in our experiments). While the machine learning community has proposed

sampling the graph to address this problem [205], there are situations where training on the whole

graph has been shown to provide better accuracy [91]. We suggest compressing the data in GPU

memory to facilitate training on large graphs.

We can also observe a predictable pattern in the data sparsity (from Figure 4.7), providing
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opportunities to apply adaptive compression algorithms [176]. As the sparsity values change during

training, the GNN training framework may need to exploit different compression solutions and

formats that work the best for a specific sparsity level.

Looking at the average sparsity for PSAGE in Figure 4.6, we can conclude that training

sparsity is a function of both the model and the input graph. When using the MVL dataset, the

average sparsity is 22%, but it reduces to 11% when training on the NWP dataset.

In terms of models, since many GNNs such as GraphTransformer, DeepGCNs and ARGA

use activation functions such as ReLU and PReLU in their layers, they produce highly sparse data.

We suggest applying compression to take advantage of this sparsity. The result will be that we can

train larger graphs on a single GPU. We plan to pursue this path in later work in this thesis.

Takeaways: Training on graphs that are larger than the size of GPU memory is a challenging prob-

lem. Thus, exploiting the high degree of sparsity present in GNN workloads by using compression

techniques can begin to address this problem.

4.6.5 Scalability of GNN training using multi-GPU systems

Using the multi-GPU implementations that we developed for the GNNMark workloads

using PyTorch DDP, we evaluate the strong scaling characteristics of the workloads in GNNMark.

We train all our models for five epochs (we observe similar performance across all epochs) and

report the average time-per-epoch, an approach used in previous work [127], to understand

the performance of DNN workloads on multi-GPU systems. We do not evaluate ARGA, as the

application inherently sends the entire graph to the GPU as a part of its training process, and there-

fore, distributing the same graph across multiple GPUs does not help. The first thing we can clearly

observe from Figure 4.8 is that not all workloads benefit from multi-GPU training. While DGCN,

STGCN, and GW show considerable performance gains, the same does not hold true for the other

applications. TLSTM does not benefit from multi-GPU training. Given that this is an LSTM-based

GNN model with low computational GFLOPS/GIOPS intensity, the application is unable to take ad-

vantage of the additional computing power offered by multi-GPU systems. For PSAGE, we observe

performance degradation when scaling across multiple GPUs. This is primarily because the PSAGE

implementation in DGL uses a batch sampling mechanism, which is not compatible with PyTorch

DDP. As a result, the training data gets replicated across multiple devices, and this replication results
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Figure 4.6: Average sparsity in the data transferred from CPU-to-GPU during GNN training in
GNNMark workloads.

in redundant computation and unnecessary communication, which in turn hurts performance.

Takeaways: Multi-GPU systems do not always benefit GNN training. Therefore, ideas such as

topology-aware scheduling and fine-grained graph partitioning that have been proposed by re-

searchers in graph-centric GNN frameworks, such as ROC [91] and NeuGraph [120], should be

adopted by high-level frameworks, such as PyG and DGL, to enable more efficient GNN training.

Currently, these frameworks are not open source, and hence, we cannot evaluate them for the GN-

NMark workloads.

4.7 GNNMark Summary

In this dissertation , we present GNNMark, a diverse benchmark suite of GNN workloads

designed for the characterization of GPU performance. To the best of our knowledge, we are the first

to propose a GNN training focused benchmark suite for the architecture community. We use GN-

NMark to perform a detailed characterization of GNNs to understand the architectural implications

of training on GPU systems. Our work provides novel insights that show the major architectural

bottlenecks in GNN training and suggests how they can be potentially addressed.
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Figure 4.7: Sparsity heat map for DeepGCN when running on the MOLHIV dataset.
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Figure 4.8: Multi-GPU performance scaling.

A single GNN model can exhibit different characteristics based on the input graph. We

observe that unlike DNNs, GEMM and convolution operations are less dominant in GNN execution.

Instead, integer operations required for graph processing can dominate execution, suggesting that

improving the performance of integer math is paramount. A high degree of instruction fetch stalls

shows that the instruction cache on the GPU can limit GNN performance. Finally, we also report

on the training sparsity and strong scaling characteristics of GNN training using our suite.
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Chapter 5

Algorithmic Strategies for GNN

Acceleration

Graph Neural Networks (GNNs) are characterized by their computational structure, which

involves dense matrix operations in the combination phase and sparse matrix operations in the ag-

gregation phase. This chapter focuses on the acceleration of the combination phase through the

development of an accelerator specifically designed for Sparse General Matrix-Matrix Multiplica-

tion (SpGEMM). Subsequently, in the following chapter, we introduce an accelerator designed to

efficiently manage both the sparse (combination) and dense (aggregation) computational phases of

GNN workloads, thereby establishing a comprehensive and versatile GNN accelerator.

Optimizing the performance of multiplications that operate on sparse matrices is challeng-

ing, especially given the associated irregular memory access patterns, resulting in load imbalance on

today’s parallel architectures. Given that the input matrix data possesses low temporal and spatial

locality, this leads to inefficient cache usage and pipeline stalls. Modern-day CPUs and GPUs strug-

gle to produce scalable performance when executing sparse matrix multiplication workloads. CPUs

fail to monetize on the parallelism present in such workloads, while GPUs struggle to balance tasks

across their thousands of hardware threads. While a number of sparse matrix formats have been

proposed to better handle the sparsity, we lack a single format that works over a range of different

sparsity patterns. Given the growing popularity of sparse datasets in emerging applications, we need

to explore how we can leverage a novel architecture to accelerate SpGEMM workloads.

As part of this dissertation , we explore a novel distributed memory SpGEMM implemen-

tation. We specifically target this work for a custom accelerator. Our approach improves perfor-
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mance by mapping the computation of row-wise products, hashtables, and on-chip accumulation

to the accelerator’s scratchpads. We provide a new set of performance metrics for this class of

workload and demonstrate their utility using a suite of micro-benchmarks run using synthetic, as

well as real-world, datasets. We also introduce a new Memory-aware Aligned Parallel Compressed

Sparse Row matrix storage format called MAP-CSR to further accelerate local memory accesses.

Running on a custom graph-based accelerator, we are able to achieve consistent speedup over MKL

and provide insights on the scalability of our implementation.

5.1 Motivation for SpGEMM kernel acceleration

Multiplication of two sparse matrices (i.e., a SpGEMM kernel) is commonly found in

many emerging workloads. Some examples of popular algorithms that need to process sparse ma-

trices include:

• Scientific computations: algebraic multigrid solvers (AMG) [11], volumetric mesh analy-

sis [130] and linear-scaling electronic structure computations [21];

• Graph-based computations: triangle counting [46], path planning [138], community detec-

tion [54], breadth-first-search [26], recommendation systems [136], graph neural networks [14],

label propagation, network packet routing [177], graph centrality measures, and graph con-

tractions [5].

SpGEMM plays a pivotal role in applications for controlling epidemics. It serves as an es-

sential kernel in calculating centrality measures for airports [5,165], and offers crucial guidance for

directing vaccine distribution to key cities [82]. The world exposure graph, plotted in Figure 5.1, is

recursively generated using the airport network dataset. We incorporate this dataset (with a sparsity

of 99.63%) in the analysis of our SpGEMM kernel implementation on the custom accelerator.

Modern trends in Big Data have witnessed an increase in data sparsity, along with an

increase in data set size. In 2021, Facebook claimed they had 2.89 billion monthly active users,

with studies suggesting an average of 338 friends per user [163]. The resulting adjacency matrix of

the Facebook user graph would approach 99.99% sparsity. Graph analytics of such highly sparse

datasets push the limits of the current computing infrastructure and expose innate problems exhib-

ited by traditional architectures. Sparse graph workloads are dominated by highly irregular and

uncoalesced memory access patterns.
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Figure 5.1: World exposure graph centrality, as generated using an SpGEMM kernel (with nodes
as cities, node size proportional to Maximal Frontier Betweenness Centrality (MFBC), edges as air
travel corridors, and colors representing countries)

Current multi-core CPU architectures, given their limited number of compute units (i.e.,

cores), fail to capitalize on the fine-grained parallelism present in these workloads. Single Instruc-

tion, Multiple Data (SIMD) style GPU architectures struggle to evenly distribute tasks among their

threads, leading to under-utilization of hardware. In this work, we present an SpGEMM algorithmm

called Sparse Matrix Atomic Scratchpad Hashing (SMASH), tailored to a custom multi-threaded

accelerator. This accelerator provides a novel MIMD-style architecture based on simple in-order

cores. SMASH, a state-of-the-art SpGEMM kernel implementation, provides 1.6× average speedup

over MKL with synthetic datasets, a 1.29× average speedup over real world datasets and a 1.04×
average speedup over real world datasets as compared to an A100 GPU.

To summarize, the key contributions of this part of the thesis work include:

1. We characterize the challenges faced while developing efficient SpGEMM kernels. To this

end, we perform an analysis of various sparse matrix multiplication methods and evaluate the

advantages and limitations of each..

2. We present a new sparse matrix storage format called Memory Aligned Parallel - Compressed

Sparse Row (MAP-CSR), which allows us to compute each row of the sparse matrix in par-
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allel. MAP-CSR improves the efficiency of memory accesses, ensuring memory-aligned

storage of each row. Our MAP-CSR implementation is able to improve the performance

of SpGEMM by 1.58×.

3. Finally, we present Sparse Matrix Atomic Scratchpad Hashing (SMASH), an efficient SpGEMM

kernel implementation that leverages distributed memory on a custom accelerator. We pro-

vide three different versions of SMASH, with iterative improvements, each capitalizing on a

different feature of the underlying architecture.

5.2 Background on SpGEMM

The SpGEMM kernel operation generally consists of two distinct phases, each with its

own computational requirements and challenges:

1. The Multiplication Phase: In this initial phase, the algorithm performs element-wise mul-

tiplication between corresponding non-zero elements of the sparse matrices involved. Given

the sparse nature of the matrices, the algorithm needs to identify matching elements effi-

ciently. This often involves complex data structures like compressed sparse row (CSR) or

compressed sparse column (CSC) to store only the non-zero elements along with their in-

dices. The computational complexity in this phase is primarily determined by the number of

non-zero elements in the matrices.

2. The Accumulation Phase: Following the multiplication of elements, this phase focuses on

summing up the products to generate the final sparse matrix. This involves aggregating values

that are multiplied with the same index, essentially condensing them into a single entry in the

resulting matrix. The challenge here is to perform this aggregation in an efficient manner,

especially when the product matrix has fewer zeros, i.e., is less sparse than the input matrices.

Optimizations often target reducing memory access latency and improving data locality in

this phase.

Variations in the implementations of these two phases give rise to various SpGEMM algo-

rithms. There are four methods to compute the first multiplication phase, as shown in Figure 5.3 and

Figure 5.2. Each method exhibits different memory access patterns and provides varying degrees of

parallelism.
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Figure 5.2: Methods of implementing the two distinct phases of SpGEMM kernel

While the inner product multiplication computes output matrix elements directly, its per-

formance is crippled by poor input reuse. On the other hand, the outer product multiplication

suffers from poor output locality arising from the endless batches of partial product matrices gener-

ated [212]. In our work, we incorporate row-wise multiplication, owing to the massive parallelism

exposed by this method. Row-wise multiplication also does not suffer from the memory bloat prob-

lem when dealing with a large number of intermediate partial products [10].

The next phase, called the accumulation phase, can be distinguished based on the underly-

ing data structures. Examples of accumulation techniques include heap-based [8], hash-based [132],

sparse accumulator (SPA) based [67], comparator array based [212], and Forwarding Adder Net-

work (FAN) based [147] to name a few. Depending on the memory hierarchy used for accumulation,

this phase can be further classified into on-chip and off-chip accumulation.

This work presents SMASH, a scalable sparse matrix multiplication kernel based on the

row-wise multiplication method. SMASH incorporates on-chip, hash-based accumulation to lower

redundant memory accesses. We implement three different versions of this kernel on a custom graph

accelerator.
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5.3 MAP - CSR Storage Format

The traditional method of storing sparse matrices is CSR [162] (see Figure 5.4), which is

memory efficient as it only stores n + nnz elements instead of n2 (where n is the dimension of a

square matrix and nnz is the total number of non-zeros). But what it gains in memory efficiency,

it lacks in exposing parallelism. For example, while writing to a CSR matrix, the rows are required

to be written sequentually. If the data needs to be written in parallel, using the CSR format requires

knowledge of the number of non-zeros in all rows in advance to allocate memory preemptively.

DATA:

3 0 7 3 3 1 2 3COL IND:

0 1 3 4 5 8 8 8ROW PTR:

0

9

0 1 2 3 4 5 6 7 8INDEX:

ELEMENTS PER ROW: 1 2 1 1 3 0 0 1

0 1 2 3 4 7ROW NUMBER:

Figure 5.4: Conventional CSR Format

The Conventional CSR format allows only sequential write operations, which poses a

considerable challenge to implement SpGEMM kernels that scale on multi-node systems. It also

introduces many synchronization operations, leading to performance degradation. We introduce a

novel matrix storage format called MAP-CSR [155], that is designed to scale well on large-scale

distributed systems.

5.3.1 MAP-CSR Implementation

Instead of the traditional 3-array storage format used conventional CSR (refer to Fig-

ure 5.4), MAP-CSR utilizes a 5-array storage (see Figure 5.5) as follows:

1. Elements per row array: Stores the number of non-zero elements present in each row.
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2. Row pointer array: Points to the start of each row (stores the offset to the start of each row in

the column pointer and the data array).

3. Replicator array: Similar to the row pointer array, but points to the replica of rows in the

column pointer array and the data array.

4. Column pointer array: Stores the column indices of elements in each row.

5. Data Array: Stores the value of each element.

DATA:

3 0 73 31 2 3COL IND:

0 5 3 14 9 X X 16ROW PTR:

0
0 1 5 6 73 9 10 11INDEX:

ELEMENTS PER ROW:

XX X XX

1 2 1 1 3 0 0 1

12 13 14 15 16

XXX X

0 12 34 7ROW NUMBER:

REPLICATOR: 4 X 8 X X X X 2

3
8

2

0
2

7

3
4

0

X
Figure 5.5: MAP-CSR Format

Using a 5-array storage format allows us to write the rows of the matrix in a random order,

as compared to the sequential order imposed by Conventional CSR. In addition to storing rows in

a random order, our approach also allows padding rows with zeros. This enables us to store rows

in specific memory banks in main memory. Data accesses to different memory banks can have

different latencies depending on which core is making the request. The ability to select a memory

bank for storing specific rows allows for the optimization of memory access latency, particularly for

rows that are accessed frequently.

A similar approach of storing sparse matrices was incorporated by Buluc et al. [25], where

they stored rows in random order. With MAP-CSR, we add another feature called the Replicator

array. This array, as the name suggests, allows rows to be replicated multiple times in the column

pointer and data array. For example, row 7 is replicated in Figure 5.5. The row pointer array points

to offset 16, the location where one copy of the row is located, and the replicator array points to

offset 2, where a second copy of the row is present. There might even exist more than two copies of

each row, in which case, the replicator array for each core points to their respective offsets with low
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latency. To compare memory requirements of the MAP-CSR format with the memory consumed by

the Conventional CSR format, we can compute the replication ratio ℜ as follows:

ℜ ≈
nnz + nnz′ + nzpad

nnz
(5.1)

where nnz represents number of non-zeros, nnz′ represents the number of non-zeros from the

replicated rows, nzpad denotes the number of zeros used for padding and ℜ is the replication ratio,

where 1 ≤ ℜ <∞.

We benchmark our SpGEMM implementation using the MAP-CSR storage format and

compare it to the performance of a vanilla CSR (traditional CSR) storage format. Figure 5.6 pro-

vides information on the replication ratio (Equation 5.1) for each dataset, as well as the speedup

obtained by using MAP-CSR as compared to the CSR storage format. A higher ratio denotes a

larger memory footprint, hence we aim to lower the replication ratio. On average, we obtain a

1.582× speedup by utilizing MAP-CSR, as compared to using a CSR storage format, with an aver-

age replication ratio value of 3.169.

Figure 5.6: Replication Ratio (lower is better) and Speedup (higher is better) of SMASH using
MAP-CSR v/s CSR storage format on real world datasets.

5.3.2 MAP-CSR Advantages

MAP-CSR offers many advantages over conventional CSR, namely:

1. Allows rows to be stored in a random order.

2. Allows zero-padding to be aligned on memory banks.

3. Allows for rows to be replicated for faster reads.

4. Allows for rows to be prefetched, as they are isolated in banks.
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5.3.3 MAP-CSR Limitations

While MAP-CSR offers major benefits, it also has certain shortcomings, which we ad-

dress here. While replication of rows provides faster memory read transactions (data can now be

fetched from memory with relatively lower latency), this affects the writing mechanisms. Writing

to a replicated row requires writing to the original copy of the row (as pointed to by the row pointer)

and requires the replicated copies to be invalidated.

Conversion of the Conventional CSR to MAP-CSR is associated with both compute and

memory overheads. Memory overhead, as discussed before (refer to Equation 5.1), poses a ℜ
times increase in the memory footprint. The computational overhead of converting to MAP-CSR

is associated with the replication of rows. Replication of rows requires re-computing the indices of

the row pointer in MAP-CSR format, which is a compute-intensive process. Despite the necessary

overhead associated with MAP-CSR, we were able to obtain an average speedup of 1.58× over

conventional CSR, achieving an average replication ratio of 3.17 for the SpGEMM workload.

5.4 SMASH Kernel

One of the key design choices for our SpGEMM kernel implementation was to select

one of the four general matrix-multiplication approaches (shown in Figure 5.3). The inner prod-

uct approach faced issues due to the cost of index-matching and low temporal reuse [142]. The

outer-product approach generated a large number of intermediate partial products, demanding high

on-chip memory requirements. Neither of these choices provides any benefit when multiplying

extremely sparse matrices.

Our novel implementation of the SpGEMM kernel is based on a row-wise product method

called SMASH [155]. Our method exploits high data reuse behavior [147] and minimizes the num-

ber of input matrix reads, while still maintaining low on-chip memory usage. SMASH incorporates

on-chip memory to store intermediate results and leverages the atomic instructions to accumulate

these partial products.

In this dissertation , we present a set of successive improvements, resulting in three ver-

sions of SMASH [155] (overview of SMASH architecture shown in Figure 5.7). In each version

we identify the remaining bottlenecks, and then optimize our algorithm to mitigate them in the next

version. Each SMASH implementation targets a specific performance bottleneck on the custom

accelerator architecture.
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Figure 5.7: The SMASH architecture.

The following subsections describe our implementation of SMASH, along with three dif-

ferent optimizations. Similar to Gustavson’s two-phase matrix multiplication algorithm [73], our

SMASH implementation is characterized by two phases:

1. Memory computation phase

(a) Matrix Read

(b) Compute Memory Requirements

(c) Window Generation

2. Product computation phase

(a) Prefetching

(b) Hashing

(c) Write-back

5.4.1 Memory computation phase

Analogous to Gustavson’s two-phase matrix multiplication approach [73], the first phase

of SMASH determines the memory required for the output matrix C, as well as the on-chip mem-

ory requirements of the intermediate products. For evaluation purposes, we do not include the time

consumed in the memory computation phase while considering speedup over other architectures.

Evaluation methodologies are further discussed in Section 5.5. This phase can be further decom-

posed into three tasks.

1. Matrix Read - Our SMASH SpGEMM implementation starts off with reading input matrices

A and B, both of which are presumed to be in a conventional CSR format.
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2. Compute Memory Requirements - After reading the input matrix arrays in CSR format, we

compute the required size of memory required to store the output matrix by counting the total

FMA operations per row. We compute the maximum number of non-zeros for every row of

output matrix C using Gustavson’s two-step algorithm [73]. In this dissertation , we refer to

this term as Floating-Point Multiply-Add (FMA). The computation of FMAs per row has a

computational complexity of O(n), where n is the size of the input matrix.

3. Window Generation - Once the memory requirements of each row are computed, this phase

then classifies each row of the output matrix C as either dense or sparse. We then group

multiple rows together into a single window that can be dispatched as a task to computing

core. This process of classifying and grouping rows into windows is characterized by two

parameters:

(a) Contraction Factor (CF ): Decides if a row of output matrix C can be classified as dense

or sparse. If FMA
CF > threshold, then the row is classified as dense, else it is classified

as sparse. The threshold value is a function of scratchpad size and matrix density.

(b) Expansion Factor (EF ): This is used to determine the memory requirements of sparse

rows, where the memory requirements are equal to the higher prime number closest to

the value FMA× EF .

A dense and a sparse row is evaluated differently in SMASH during the hashing phase. A

sparse row will be allocated less memory than the max size of the row, as a dense row will

follow a 1 : 1 mapping and will be allocated memory equal to the max size of the row.

Once the classification of rows is complete, this phase groups multiple rows together into

a single window, such that the intermediate partial products can fit on the on-chip memory

(i.e., scratchpad). At this phase of window generation, the input matrices are converted from

conventional CSR format to the new MAP-CSR format. The MAP-CSR storage format allows

for each window to consist of rows in a non-sequential order, permitting greater flexibility

for this phase to generate windows. An evenly spread mix of sparse and dense rows are

packed together and shipped to the next phase for computation. Every individual compute

core processes its own window independently, regardless of the status of other windows. This

allows us to assign windows to compute cores in a random order and oversubscribe windows.
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5.4.2 Product Computation Phase

5.4.2.1 Prefetching

Each window generated in the previous phase is scheduled on a computing core for gener-

ating intermediate products. The prefetching phase preemptively copies the input matrix rows that

are required by each compute core to their respective local memory bank. This phase of Prefetching

is only possible due to the “replicator” property of MAP-CSR, which allows rows to be duplicated

multiple times across each computing core.

5.4.2.2 Hashing

This phase involves the multiplication of input matrix elements, required to compute the

intermediate partial product. After the partial product is computed, it needs to be stored and merged.

Merging partial products is a memory-intensive process requiring scanning through arrays to match

indices. In addition, on multi-threaded architectures, this class of operations needs to be synchro-

nized to avoid data races and ensure atomicity. Among the multiple solutions available to store and

merge data, we opt for hashtables. SMASH utilizes row-partitioned hashtables to store and merge

partial products. The use of hashtables avoids the use of expensive index matching, while allowing

us to merge partial products on the fly.

We utilize hashtables to store intermediate partial products (on the on-chip memory). In

the hashing phase, a global hashtable is created in the Scratchpad (SPAD) (the on-chip memory). A

single row is allocated to one thread of each compute core in a round-robin fashion. Each element

of the row from the first matrix is multiplied with an entire corresponding row of the second matrix

(Equation 5.2 and 5.3, where C is the output matrix, A and B are input matrices, and N is the size

of the matrix). This leads to the creation of partial products. These partial products are hashed into

the SPAD using prime-modulo hashing.

C[i, :] =
N∑
k=0

A[i, k] ∗B[k, :] (5.2)

u⊗ v =


u1

u2

u3

u4


[
v1 v2 v3

]
=


u1v1 u1v2 u1v3

u2v1 u2v2 u2v3

u3v1 u3v2 u3v3

u4v1 u4v2 u4v3

 (5.3)
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In prime-modulo hashing, we hash the intermediate products on the SPAD by indexing each to the

closest highest prime number, as computed in the Window Generation phase. The use of prime

numbers allows us to reduce the number of hash collisions. A prime-modulo hash of intermediate

products can result in three outcomes:

• Hash Insert: This routine is executed when a hashed index finds an empty location on SPAD.

The column index value and data value of the intermediate product are stored on the SPAD at

the hashed index location.

• Hash Update: This routine is executed when the hashed index does not find an empty location

on SPAD, but the column index value of the current intermediate product matches with the

one present on SPAD. In this case, the SPAD data value is updated with the sum of new data

value and existing data value. This routine is also called the merging of partial products.

• Hash Collide: This routine indicates that the hashed index did not find an empty location

on SPAD, nor did the column index match the existing column index value on SPAD. In this

case, the algorithm probes for a new location using quadratic probing to find the next available

empty location on SPAD for hash insertion.

The pseudo-code for the entire hashing phase is shown in Algorithm 1.

5.4.2.3 Write-back

The write-back phase moves the partial products from the hashtable to their final output

matrix, stored in DRAM in the MAP-CSR format. The use of the MAP-CSR storage format allows

us to asynchronously move rows of the output matrix C in non-sequential order from the SPAD to

their final DRAM memory location.

The SMASH implementation discussed so far is considered as our “base” implementation.

We iteratively add three more optimizations on top of this base implementation, addressing key

performance bottlenecks observed during each implementation.

5.4.3 SMASH Version 1: Atomic Hashing

A row-wise product method multiples each element of the first input matrix with an entire

row of the second input matrix, generating a row of partial products of the output matrix. These

partial products are then merged to form the output matrix elements using a hashtable. This is one
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Algorithm 1: SMASH HASHING
// READ PHASE

1 while Till you reach end of window do
// Atomically distribute work to each thread

2 token← Each thread will receive one unique token
3 if token id % 2 = 0 then
4 row begin← A col ptr copy 1[ token id

2 ]
5 else
6 row begin← A col ptr copy 2[ token id

2 ]
7 end
8 row end← A col ptr[ token id

2 + 1]
9 for i← Iterate from row begin to row end do

10 if Check if we are within our assigned window then
11 col begin← B row ptr[ token id

2 ]

12 col end← B row ptr[ token id
2 + 1]

13 if token id % 2 = 0 then
// Hash EVEN Section

14 else
// Hash ODD Section

15 end
16 end
17 end
18 end
19 A col ptr copy 1 and A col ptr copy 2 will now reflect new positions

of the disadvantages of using a row-wise product method. The intermediate results (i.e., partial

products) need to be stored and merged into the output matrix atomically. The base version of

SMASH only allowed a single compute core to work on each row of output matrix C, avoiding

data races. This leads to a lower degree of parallelism in each window, as the maximum number

of compute cores concurrently working on any window depends on the number of rows in that

window. We overcome this obstacle with our first version V 1 of the SMASH kernel by using

atomic hashing. We make use of atomic compare and exchange instructions and atomic fetch and

add instructions, enabling us to use multiple cores simultaneously to produce a single output row

of matrix C. Optimizing with atomic instructions leads to a 2.48× speedup over the base SMASH

implementation for synthetic datasets.

5.4.4 SMASH Version 2: Tokenization

SpGEMM workloads, when working with extremely sparse matrices that possess a highly

irregular non-zero distribution, experience load imbalance on multi-core architectures. Although

our implementation is not immune to the effects of such irregular sparsity patterns, we aim to reduce

the performance impacts of load imbalance with an on-the-fly row scheduler that is based on the

66



5.4. SMASH KERNEL

Algorithm 2: SMASH HASHING Even and Odd Section
1 for k ← Iterate from col begin to col end do

// Multiply element from mat A with that from mat B
and store its tag and value

2 tag ← X coordinate from mat A element and Y coordinate from mat B
element
// Hash the Tag

3 tag ← tag % prime modulo
4 if SPAD tag[tag] = EMPTY then
5 SPAD tag[tag]← tag // Store Tag on scratchpad
6 SPAD val[tag]← value // Store Value on scratchpad
7 else
8 if SPAD tag[tag] = tag then
9 SPAD val[tag]+ = value // Accumulate Value

10 else
// Probe for empty space on Scratchpad

11 end
12 end
13 end
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Figure 5.8: Speedup of SMASH over MKL using 1 CPU, 2 CPUs, and over cuSPARSE using an
A100 GPU

classic producer-consumer model.

We tackle this issue by adding a dynamic work scheduler layer into our hashing phase. In-

stead of statically assigning rows to threads in a round-robin fashion, we adopt a Producer-Consumer

for model row allocation. The dynamic row allocation works as follows:

1. Generate two tokens for every row present in the window.

2. Each compute core polls for a single token. Thus, every row is allocated 2 compute cores.

3. The 2 compute cores start hashing the row. The first core starts from the beginning of the row

and hashes the first half of the row (i.e., the even section). The second thread applies the same

steps over the second half of the row (i.e., the odd section).

4. Partial products from both threads are hashed into a common hashtable, stored in the SPAD

memory.
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5. When all of the tokens have been polled, the window execution is completed.

Despite the overhead of polling tokens, tokenization produces a 1.5× speedup over static allocation,

as it achieves a near-perfect distribution of workload across threads. More details of the performance

benefits are presented in Section 5.5.

5.4.5 SMASH Version 3: Pipelining

Previous versions describe how atomic hashing exposes more parallelism and how tok-

enization balances workload across compute core. Next, we describe an optimization to increase

resource utilization, where we adopt pipelining at the phase level. We divide the local memory

and SPAD into 2 equal parts. In the first iteration, the first window is processed by the prefetching

phase. In the next iteration, that hashing phase processes the previously prefetched window and the

prefetching phase works on the next upcoming window. Once the hashing phase is completed, the

write-back phase starts moving data out of the SPAD. The hashing phase starts working on the next

window, preemptively loaded by the prefetching phase (Figure 5.9). As compared to our previous

Window 3

PREFETCH

Iteration 2Iteration 1Iteration 0 Iteration 3 Iteration 4 Iteration 5

Window 3

HASH

Window 3

WRITE-BACK
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HASH
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Window 1

PREFETCH

Window 1

HASH

Window 1

WRITE-BACK

Window 0
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Window 0

HASH

Window 0

WRITE-BACK

Figure 5.9: SMASH Pipeline Stages

SMASH versions, where at each stage only one phase is active, this phase enables all three phases
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to be active simultaneously. This comes at the cost of increased resources required in terms of local

memory and SPAD memory. Despite the increased resource utilization, with SMASH V 3 pipelin-

ing, we were able to obtain a 1.3× speedup as compared to SMASH V 2, for synthetic datasets.

5.5 SMASH Evaluation

We designed SMASH, a SpGEMM kernel implementation, to expose the performance

improvements provided by the custom accelerator architecture. We compare its performance to

Intel’s MKL implementation on a dual socket server (with Intel Xeon E5-2630), as well as against

NVIDIA’s A100 GPU.

We evaluate the performance of our SMASH SpGEMM kernel implementation on syn-

thetic, as well as real-world, datasets. For synthetic datasets, we chose the RMAT, as it produces

datasets possessing a non-zero power-law distribution [33,168], making it harder to find patterns in

the non-zero values.
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Figure 5.10: Speedup over MKL, as compared to different versions of SMASH exploiting various
architectural features.

For real-world datasets, we experimented with datasets from the Stanford Network Anal-

ysis Platform (SNAP). For all our experiments, we compare the performance of a single CPU core
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to a single compute core, a single Intel CPU with 8 cores, to 8 custom accelerator cores, a dual-

socket server with 16 compute cores, and an A100 GPU to a system with 64 compute cores. For our

first experiment, we compare the speedup obtained for our SMASH implementations on 16 compute

cores, and compare against Intel MKL’s performance on a dual-socket server, as seen in Figure 5.10.

Our base implementation of SMASH ends up with 3.03× slowdown, but after iterative optimiza-

tions, exploiting various architectural features, we end up with an average speedup of 1.6× over

MKL for synthetic datasets.

Next, we focus on the “Tokenization” optimization. Tokenization of the hashing phase led

to better workload balance between threads. With tokenization, almost all threads have near-perfect

utilization, leading to an average 1.5× speedup over the non-optimized version. We next analyzed

the performance improvements provided by pipelining. Ideally, if a workload is divided into 3 stages

of a pipeline, the highest speedup achievable is 3. For this case to hold true, the work across each

stage of the pipeline would need to be completely balanced. In our case, the prefetcher consumes

12.1% of cycles, the hashing phase consumes 64.8% of cycles, while the writeback phase consumes

18.8% of overall cycles, as shown in Figure 5.11. Despite this imbalance of cycles taken by each of

the phases, we obtained a 1.3× speedup over the non-pipelined version of SMASH for the synthetic

datasets. We also performed scaling experiments by measuring the performance improvements

Hashing  64.8%
Scheduler  1.7%

Prefetcher  12.6%

Dispatcher  2.1%

Writeback  18.8%

Figure 5.11: Cycle consumption breakdown of SMASH phases

as a function of both the number of cores, as well as the matrix density (this experiment utilizes
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the synthetic dataset). Figure 5.12 plots the density of the input matrix on the X-axis and the

number of cores utilized on the Y-axis. Each number in this heat map is representative of the

speedup acquired by SMASH V3 over MKL with the same number of cores. This plot indicates that

SMASH outperforms the MKL implementation for sparse matrices at higher core counts. Finally,
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Figure 5.12: Speedup over MKL, which varies as a function of matrix density and core count.

we compare the performance of real-world datasets from the SNAP library against an MKL single

socket, an MKL dual-socket, and a cuSPARSE single GPU A100. We obtain an average speedup of

1.20× over a single socket MKL kernel, 1.29× speedup over a dual-socket MKL kernel, and 1.04×
speedup over the cuSPARSE kernel.

5.6 SMASH Summary

SpGEMM workloads are memory-intensive workloads that possess highly irregular mem-

ory access patterns. In this work, we presented SMASH, a scalable SpGEMM kernel implemen-

tation targeting a custom graph accelerator. Our 3 iterative optimizations exploit the architectural

features of the graph accelerator and provide 2.48×, 1.5× and 1.3× speedups, respectively. Our

atomic hashing optimization, tokenization, and pipelining of SMASH kernels provided us with an

average of 1.20×, 1.29×, and 1.04× speedup over MKL single socket, MKL dual-socket, and GPU

A100 hardware, respectively.
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Chapter 6

Hardware Acceleration of GNNs

Graph Neural Networks (GNNs) are emerging as a formidable tool for processing non-

euclidean data across various domains, including bioinformatics, financial networks, energy net-

works, telecommunication and social network analysis. Despite their effectiveness, their adoption

has not been pervasive because of scalability challenges associated with large-scale graph datasets,

particularly when leveraging message passing, posing significant computational bottlenecks. This

class of large-scale workloads exhibits irregular sparsity patterns, resulting in unbalanced utilization

of computational resources.

6.1 Key Bottlenecks in Accelerating GNNs

Deep Neural Networks have proven to be powerful models for solving problems that rely

on data with an underlying Euclidean or grid-like structure [206], such as computer vision, natural

language processing, and audio vision. In contrast, Graph Neural Networks (GNNs) have emerged

as powerful frameworks for handling non-Euclidean data (e.g., social networks on the scale of

billions [163]), achieving impressive performance across various domains such as social science,

chemistry, and bioinformatics [196]. However, the computational complexity of GNNs, especially

when working with ultra-sparse, large-scale graph datasets, poses challenges due to architectural

limitations of traditional hardware (i.e., CPUs / GPUs) [145]. Moreover, GNNs predominantly

adopt a recursive neighborhood aggregation methodology, in which each node aggregates the feature

vectors of its neighboring nodes to derive its own updated feature vector. The scalability of message

passing in GNNs, when applied to large graph structures, poses a significant bottleneck, especially

as the size of the graphs surpasses the capacity of on-chip memory hierarchies in today’s CPUs and
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GPUs [158]. This leads to redundant and time-consuming memory transactions to fetch data from

the main memory [14].

We identify the following three key bottlenecks for GNN workloads:

1. Diverse Data Dependence Patterns: GNN workloads feature multiplication and accumulation

operations, each demonstrating unique data dependency patterns.

2. Poor Hardware Resource Utilization: Compute units suffer from data starvation and load

imbalance due to irregular sparsity patterns exhibited by large input graphs.

3. Memory bloat: The matrix multiplication methods generate a large number of intermediate

partial products that require efficient merging to avoid redundant accesses to higher level

memory. We further elaborate on each of these three critical bottlenecks identified for GNN

workloads.

Diverse Data Dependence Patterns: The process of neighborhood aggregation in graphs

can be split into a multiplication stage, followed by a merge/reduction stage. The multiplication

stage creates partial products by multiplying the adjacency matrix of the input graph with the fea-

ture matrix. The reduction stage accumulates (i.e., merges) the partial products to update the node

feature vectors. The multiplication stage’s operands depend on data stored in the high-bandwidth

memory (HBM) [142]. In contrast, the reduction stage’s operands depend on data located within the

on-chip memory. Utilizing a singular computational resource for both multiplication and accumu-

lation operations proves suboptimal, as mapping multiplication operations on computing resources

tends to compromise the efficiency of mapping the accumulation operations (due to varying data

dependency patterns).

Poor Hardware Resource Utilization: The multiplication and accumulation stages are

characterized by distinct architectural implications. The multiplication stage typically stalls due to

data starvation (stalls accessing the input graph and feature matrix elements), whereas the accu-

mulation stage suffers from uneven partial product distribution due to the sparsity patterns. Prior

accelerators [153, 210] have adopted look-ahead buffers for prefetching data, aiming to prevent

compute stalls caused by data starvation. While these solutions reduce compute stalls, aggressive

prefetching leads to cache pollution as redundant data resides in the cache [154]. These issues can

be addressed using two strategies, each catering to their respective problems. (a) Multiplication

mapping: Implementing a tiled row-wise product approach to partition the computation into dis-

tinct tasks, which are then dynamically allocated to NeuraCore (computing elements), depending
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Figure 6.2: Various approaches to matrix multiplication, each showcasing different degrees of data
reuse for input and output matrices.

on its utilization. The row-wise product method, also known as Gustavson’s algorithm, is a popular

choice among recent accelerators such as Gamma [210], MatRaptor [169], and SPADA [117] as this

approach has shown high-efficiency when targeting sparse matrix computations in the aggregation

stages of GNNs. Developing dedicated components for multiplication enables mapping these oper-

ations to NeuraCore, independent of the accumulation stage, thus leveraging the locality of the input

data. (b) Accumulation Mapping: Using a dynamic reseed hash-based mapping agnostic to spar-

sity patterns. This allows even distribution of the partial products among the NeuraMem (on-chip

memory) accumulation units.

Memory Bloat: Incorporating the row-wise product approach enhances input data local-

ity but creates a large number of partial products. Table 6.1 presents memory bloat for SpGEMM

workload across various sparse graph datasets. We define bloat percent as shown in Equation 6.1

Bloat Percent =
ppinterim − nnzoutput

nnzoutput
∗ 100 (6.1)

wherein ppinterim denotes the count of intermediate partial products and nnzoutput signifies the

count of non-zero elements in the resultant product matrix. Although tiling the computation partially

addresses this issue, it does not fully resolve it. Prior solutions such as Gamma [210] have relied

on large explicitly managed cache systems similar to FiberCache [210], which consumes up to 72%

of the total chip’s area. The memory bloat issue can be addressed using a rolling eviction strategy,

which automatically evicts a partial product from the on-chip memory once all contributing partial

products have been fully accumulated. We enable a strategy using an eviction counter integrated

with the on-chip memory hashtables.

The work here develops NeuraChip, an innovative GNN spatial accelerator featuring a decoupled

computation pipeline. Decoupling multiplication and accumulation operations into dedicated com-

ponents, we optimize data reuse through strategic mapping. We explore an adaptive hash-based
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Table 6.1: SpGEMM bloat analysis across hyper-sparse graph datasets

Dataset Node
Count

Edge
Count

Sparsity
(%)

Bloat
Percent

2cubes sphere 101492 1647264 99.9840 205.87

ca-CondMat 23133 186936 99.9651 75.23

cit-Patents 3774768 16518948 99.9999 19.32

email-Enron 36692 367662 99.9727 68.90

filter3D 106437 2707179 99.9761 326.34

mario002 389874 2101242 99.9986 99.43

p2p-Gnutella31 62586 147892 99.9962 10.21

poisson3Da 13514 352762 99.8068 297.92

scircuit 170998 958936 99.9967 66.13

web-Google 916428 5105039 99.9994 104.27

amazon0312 400727 3200440 99.9980 97.21

cage12 130228 2032536 99.9880 127.23

cop20k A 121192 2624331 99.9821 327.07

facebook 4039 60050 99.1519 2872.80

m133-b3 200200 800800 99.9980 26.93

offshore 259789 4242673 99.9937 205.45

patents main 240547 560943 99.9990 14.18

roadNet-CA 1971281 5533214 99.9999 35.75

webbase-1M 1000005 3105536 99.9997 36.02

wiki-Vote 8297 103689 99.8494 148.09
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compute mapping. Our approach introduces a flexible, dynamic reseeding hash-based compute

mapping (DRHM) tailored for GNN workloads. DRHM benefits from the constant lookup times

characteristic of hash functions, while also mapping tasks evenly across all computing resources

by generating a new seed at predetermined intervals of computation. We also explore how to use

rolling evictions in order to address memory bloat. We explore on-chip hash tables to manage partial

products, effectively reducing memory congestion caused by their generation.

6.2 Fundamentals of GNN Workloads

Graph neural networks (GNNs) are capable of extracting important features, such as struc-

tural motifs (i.e., arrangements of nodes, edges, and metadata) [92], learning not only the individual

characteristics of each element (i.e., a node in the graph), but also the interconnections (i.e., the

interrelationships between nodes) between elements [219]. GNNs use convolution operations to

extract various features from the graph [102]. The methodology employed is called neighborhood

aggregation, where the final feature vector for each vertex is computed by iteratively aggregating

and transforming the input feature vectors of adjacent vertices [219]. This process includes two

steps, which are called the aggregation and combination stages. This process is carried out iter-

atively, and after k iterations through these stages, the resultant feature vector of the target vertex

signifies the distinct structural data of the vertex’s k-hop vicinity [193].

For instance, a Graph Convolutional Network (GCN) is one such GNN model. Equa-

tion 6.2 below computes the forward propagation for a single layer in a GCN.

X(l+1) = σ(AX(l)W (l)) (6.2)

where A represents the adjacency matrix of the graph, where each row lists the interconnections of a

vertex to all other vertices in the graph. X(l) refers to the input feature vectors of every vertex in the

lth layer of matrix X . W contains the GNN’s model parameters, which are obtained through model

training. σ() represents the non-linear activation function, for instance, ReLU (Rectified Linear

Unit).
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6.3 Architectural Implications of GNN Workloads

Aggregation Stage: The aggregation stage in GNN workloads is critical for capturing the

structural information of graphs. It involves gathering and summarizing information from a node’s

neighbors, which can be a challenging task given the irregular data structures common in graph-

based data. This is typically computed with sparse matrix multiplication kernels. Given the high

level of sparsity in input graphs, typically above 99%, this stage is characterized by random access

patterns in memory, which presents a challenge for traditional architectures that are more suited for

linear data access. Additionally, the skewed sparsity patterns often lead to workload imbalance on

computing resources, which can impact performance efficiency.

Combination Stage: The combination stage in GNNs involves the integration of node

features with neighborhood information. This process is computationally intensive and typically

comprises dense matrix multiplications, nonlinear activations, and dimensionality reduction opera-

tions. Architecturally, this stage demands high memory bandwidth and efficient data reuse mech-

anisms to handle large matrices. It also necessitates a balance between compute utilization and

memory access, as the combination of features from large graphs can lead to memory bottlenecks.

While prior accelerators [117, 210, 212] often focus on sparse matrix multiplication tasks, they

do not adequately address dense workload demands. Our NeuraChip accelerator model provides a

more generalized solution, addressing the needs of both sparse graph computations and dense work-

loads. This approach positions NeuraChip as a versatile GNN accelerator, adept at handling both

the aggregation and combination stages.

6.4 Sparse Matrix Multiplication: Algorithmic Overview

The Sparse General Matrix-Matrix Multiplication (SpGEMM) kernel execution is char-

acterized by two main stages: the multiplication stage and the accumulation stage as visualized in

Figure 6.3. The implementation variations in these stages lead to distinct SpGEMM algorithms. We

describe the four approaches to execute the initial multiplication stage, as illustrated in Figure 6.2.

These approaches vary in their memory access patterns and the level of parallelism they expose.

The inner product approach, incorporated in InnerSP [10] computes elements of the out-

put matrix directly but is hindered by inefficient input reuse. Conversely, the outer product approach,

utilized in OuterSPACE accelerator [142] is hampered by suboptimal output locality due to the cre-

ation of numerous batches of intermediate partial product matrices [212]. Our research adopts the
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row-wise multiplication approach (i.e., Gustavson’s algorithm), selected for the extensive paral-

lelism it provides. Notably, this approach efficiently avoids the memory bloat issue associated with

handling numerous intermediate partial products [212].

The subsequent stage, known as the accumulation stage, merges the generated interme-

diate partial products. Various accumulation methods include heap-based [8], hash-based [132],

sparse accumulator (SPA) based [67], comparator array based [212], and Forwarding Adder Net-

work (FAN) based [129, 147], among others (illustrated in Figure 6.3). This stage can also be

subdivided into on-chip and off-chip accumulation, based on the utilized memory hierarchy. Neu-

raChip merges partial products using on-chip accumulation to reduce redundant main memory data

fetches. For sparse matrices with skewed non-zero distributions, the on-chip accumulation stage can

result in uneven workload distribution, a factor that significantly impacts the overall performance

and efficiency of SpGEMM operations.

SpGEMM Accumulation PhaseMultiplication Phase

Inner
Product On-chip

Accumulation

Off-chip
Accumulation

Heap based

Hash based

Sparse
Accumulator
Comparator

Array
Forwarding

Adder

X =

A B Intermediate Intermediate C

Outer
Product

Row-wise
Product
Col-wise
Product

Figure 6.3: Various methods employed in multiplication and accumulation stages.

6.5 Mapping Algorithms: Design and Requirements

Mapping algorithms play a crucial role in efficiently handling computational tasks, partic-

ularly in scenarios involving sparse data structures such as those found in Graph Neural Networks

(GNNs). These algorithms are tasked with assigning tasks or data elements to computational nodes
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or memory locations. The key requirements for effective mapping algorithms include:

Consistency: The algorithm must consistently map the same index to the same node. This

ensures correctness in data processing.

Low Computational Overhead: The lookup process should be relatively fast, with mini-

mal computational and memory overheads. This efficiency facilitates cost-effective index matching,

streamlining partial product reduction.

Sparsity Agnostic: Regardless of skewed sparsity patterns, the mapping algorithm should

remain impartial to these variations. This ensures uniform performance across different data sets [30].

Given these requirements, hash-based mapping emerges as a viable solution [39]. How-

ever, traditional hash-based methods such as Round Robin Hashing (or Ring Hashing) [174] and

Prime Number Based Modular Hashing [19] have limitations [32]. Neither is fully insensitive to

sparsity patterns; a specific set of indices might consistently map to the same node, leading to po-

tential workload imbalance.

An alternative approach is random mapping, which ideally achieves sparsity-agnostic

mapping by randomly distributing indices. However, to ensure consistency, this method requires

maintaining a large lookup table, which is not practical due to memory constraints.

To address these challenges, we propose a novel approach: Dynamic Reseed Hash-Based

Mapping (DRHM). This method is similar to prime modular hashing, but with a significant en-

hancement. After processing a predetermined set of computations, we reseed the hash function.

The updated seed values are then stored in a compact lookup table. This dynamic reseeding ensures

that the distribution of indices does not become predictable or skewed, effectively mimicking the

sparsity-agnostic property of random hashing.

Dynamic Reseed Hash-Based Mapping strikes a balance between the ideal characteristics

of random mapping and the practical limitations of traditional hash-based methods. By only stor-

ing seed values rather than the entire mapping of indices, it maintains a small memory footprint.

Concurrently, it offers the sparsity-agnostic mapping necessary for handling diverse and skewed

data sets efficiently. This method significantly enhances the performance of computational tasks,

particularly in environments where data sparsity and distribution can vary widely.

6.6 NeuraChip Architecture

NeuraChip [156] is a decoupled spatial accelerator. Its two primary components include:

i) the NeuraCore and ii) the NeuraMem. The NeuraCore is specifically tailored for multiplication
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tasks, whereas the NeuraMem focuses on accumulating data on-chip [157]. They are arranged in

an interleaved pattern and connected through a 2D torus network fabric, as shown in Figure 6.5.

To facilitate efficient communication among these components, on-chip routers have been incorpo-

rated. NeuraCores and NeuraMems are organized into clusters known as tiles [156]. The accelerator

includes a total of eight tiles, each linked to a single Double Data Rate (DDR) channel. Each tile

features a memory controller responsible for interfacing with the DRAM banks.

Buffers play a critical role in the functionality of the four major components of our accel-

erator [158]. Both the NeuraCore and the NeuraMem are equipped with instruction buffers [157].

Additionally, the on-chip routers incorporate packet buffers, and the memory controllers are fitted

with buffers for managing both reading and writing operations.

The incorporation of these on-chip buffers enhances the accelerator’s flexibility, allowing

it to adapt to diverse sparsity patterns. In scenarios where irregular graph structures could lead

to network congestion, these on-chip buffers prove beneficial. They ensure that the components

consistently have instructions to execute, thus avoiding potential delays or bottlenecks in processing.

6.6.1 Tiled Gustavson’s Multiplication Algorithm

GNNs typically employ two primary layers (phases) in their architecture: the neighbor-

hood aggregation phase, which gathers information from a node’s neighbors in the graph, and the

combination phase, where a node’s representation is updated by integrating its own features with

those aggregated from its neighbors [62]. This discussion focuses on the aggregation phase, which

predominantly involves sparse matrix multiplications.

In this dissertation , we implement a modified version of Gustavson’s matrix multipli-

cation algorithm [157]. Gustavson’s algorithm operates on a row-stationary approach, processing

the output matrix one row at a time. Specifically, it traverses the adjacency matrix row by row,

performing a linear combination of these rows as illustrated in Figure 6.4.

Gustavson’s approach multiplies each element in a row of the adjacency matrix with all

elements in the corresponding row in the feature matrix that has the same row index as the element’s

column index. Our adaptation enhances Gustavson’s method by simultaneously processing multiple

rows. We execute the multiplication of four rows at a time, aligning four elements from a column

of the adjacency matrix with four elements from a row of the feature matrix. This is achieved using

a specialized instruction, denoted as the MMH4 instruction.

Our technique represents a fusion of Gustavson’s algorithm and the outer-product method.
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Figure 6.5: Overview of NeuraChip architecture with Tile 16 configuration (16 NeuraCores and
NeuraMems per tile with a total of 8 tiles).

Unlike the outer-product approach which finalizes the multiplication of an entire column with a

row before moving to the next, our strategy concurrently processes four rows by employing the

Gustavson method. The selection of the number ‘four’ for simultaneous row processing results

from design space exploration specific to the NeuraChip accelerator.

To implement this modified Gustavson’s approach, the adjacency matrix is stored in a

compressed sparse column (CSC) format, and the feature matrix is stored in a compressed sparse

row (CSR) format. However, this approach presents two primary challenges:

Unavoidable Index Matching: Employing Gustavson’s algorithm and compressed ma-

trix storage formats such as CSR and CSC inherently leads to the necessity of index matching [169].

We address the index-matching overhead with a constant lookup hash function, facilitating the on-

chip accumulation of partial products with a constant lookup time. The low overhead provided

by our hash function is further optimized by adding a dedicated hash engine, as described in Sec-

tion 6.6.4.

Memory Bloat Issue: The tiled Gustavson method can result in memory bloat, charac-

terized by the generation of a large number of partial products [10]. To tackle this issue, we have

implemented a rolling eviction mechanism. This system accumulates partial products as they are

generated and promptly evicts them once the reduction is complete, with further details provided in

Section 6.6.4.
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Figure 6.6: NeuraChip memory hierarchy

6.6.2 On-chip Dataflow

To illustrate the data flow within NeuraChip, we walk through an example of an SpGEMM

kernel executed on the NeuraChip accelerator (see Figure 6.5 and 6.6). Step 1 The process begins

with the Dispatcher issuing matrix mult hash 4 (MMH4) instructions to every NeuraCore. Step

2 The NeuraCores trigger memory read requests that are routed to the memory controller. Step

3 The Memory Controller coalesces requests for contiguous memory locations into a singular

transaction and reorganizes memory transactions to enhance spatial locality. Step 4 Input ma-

trix data, fetched from DRAM, is streamed onto respective NeuraCore components. Step 5 The

NeuraCores compute the partial products, along with their corresponding rolling counters (further

details in Section 6.6.3), subsequently generating the hash accumulate (HACC) instructions. Step

6 HACC instructions are streamed over on-chip routers into NeuraMem components, based on a

hash-based mapping. Step 7 The NeuraMem component employs another hash function to hash

and accumulate these partial products onto their on-chip memory. Consecutive hashes of partial

products with the same TAG are merged within NeuraMem, with each hash insertion decrementing

the counter by 1. Step 8 When the counter reaches zero; this triggers the eviction of the hashline,
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and the resultant data is written back to the High Bandwidth Memory (HBM).

6.6.3 NeuraCore

The NeuraCore is the primary compute engine in our accelerator. It computes the mul-

tiplication operation and generates the partial products of matrix multiplication operations. It is

a simple in-order core with support for matrix instructions. NeuraCore supports a special matrix

instruction called matrix mult hash 4 or simply MMH4.

where opcode represents the operation code, which specifies the MMH4 instruction to be

executed by NeuraCore. Baseaddr denotes the base address used to offset the address of all other

addresses involved in this instruction. A dataaddr refers to the memory address where the data of

matrix A is located (matrix A is stored in CSC storage format). B col indaddr points to the memory

address containing the column indices of matrix B (matrix B is stored in CSR storage format).

B dataaddr indicates the memory address where data from matrix B is stored. roll counteraddr

denotes the memory address where the rolling eviction counter is located. The pseudocode for

executing the MMH4 instruction is shown in Algorithm 3. Each MMH4 instruction has the capability

to dispatch up to 16 HACC instructions (further elaborated in the NeuraMem section).

Algorithm 3: MMH4 instruction execution
1: for i = 0 to 3 do
2: for j = 0 to 3 do
3: TAG← Mem[(Baseaddr +Bcol ind addr + j)]
4: DATA← Mem[(Baseaddr +Adata addr + i)]
5: ×Mem[(Baseaddr +Bdata addr + j)]
6: CTR← Mem[(Baseaddr + roll counter + i ∗ 4 + j)]
7: Dispatch HACC(TAG,DATA,COUNTER)
8: end for
9: end for

The operational sequence within NeuraCore is shown in Figure 6.7, and can be broken

down into the following steps: Step 1 : The operation starts with the dispatcher transmitting a MMH4

instruction to NeuraCore, allocating the instruction to one of the available pipelines. Pipelines are

allocated using a round-robin scheme. Step 2 : The MMH4 instruction is decoded by the on-chip

decoder. Step 3 : Following decoding, NeuraCore maps instruction variables to the register file,

utilizing dynamic register allocation. Step 4 : Post register allocation, the NeuraCore’s internal

address generator constructs memory requests to fetch elements from the input matrices. Step 5 :

85



6.6. NEURACHIP ARCHITECTURE

North-East
Port

North-West
Port

Control
Unit

Address
Generator

Control Line
R

egister File

SCOREBOARD

IN
ST

X

0

IN
ST

X

0

IN
ST

X

1

IN
ST

X

0
IN

ST
X

0

IN
ST

X

1

IN
ST

X

1

IN
ST

X

0

MULT

InstX D
ecoder

SCOREBOARD

IN
ST

X

0

IN
ST

X

0

IN
ST

X

1

IN
ST

X

0

IN
ST

X

0

IN
ST

X

1

IN
ST

X

0

IN
ST

X

1

MULT

InstX D
ecoder

Pipeline 0

Pipeline 1

R
egister File

South-East
Port

South-West
Port

Address
Generator

R
egister File

SCOREBOARD

IN
ST

X

1

IN
ST

X

0

IN
ST

X

1

IN
ST

X

1

IN
ST

X

1

IN
ST

X

1

IN
ST

X

0

IN
ST

X

0

MULT

InstX D
ecoder

SCOREBOARD

IN
ST

X

0

IN
ST

X

1

IN
ST

X

1

IN
ST

X

0

IN
ST

X

1

IN
ST

X

1

IN
ST

X

1

IN
ST

X

0

MULT

InstX D
ecoderPipeline 3

Pipeline 2R
egister File

From
Dispatcher

Control Unit receives instruction
from Dispatcher and allocates to

one of the idle pipelines
1

2 Instruction is decoded

3

Instruction is allocated
on register file

4 Memory Requests are generated5
Memory Requests are transmitted

to higher level cache 6

Receive
Memory

Responses

7 Compute Partial
Products

8 Send H
ash-Accum

ulate request to
N

euraM
em

 unit

Instx Buffer

Figure 6.7: Block diagram showing NeuraCore’s quad-pipeline layout.
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An adaptive routing algorithm [6] selects the best port to dispatch the memory request, which is

then forwarded to a higher-level cache. Step 6 : Upon completing the memory request, a response

is received at one of the NeuraCore’s four ports. This response is then routed toward its respective

pipeline. Step 7 : As soon as all memory responses corresponding to a particular instruction are

received, the instruction is deemed ready for execution by the scoreboard. Subsequently, the mul-

tiplication pipeline calculates the partial product and generates up to 16 HACC instructions. Step

8 : Lastly, the HACC instructions are relayed to NeuraMem units using the most suitable port, as

determined by the on-chip hash-based mapping function.

6.6.4 NeuraMem

NeuraMem is a crucial component of the NeuraChip accelerator. While NeuraCore units

generate partial products, NeuraMem units handle the on-chip accumulation of these partial prod-

ucts. The central component of NeuraMem units is the Hash-Engine. The layout of various compo-

nents within NeuraMem is as shown in Figure 6.9.

HashPad: The Hash-Engine operates on what we refer to as “hash-lines” Figure 6.9. A

hash-line comprises a single TAG, DATA, and COUNTER entry. The collective TAG array, DATA

array, and COUNTER array, essentially the whole set of hash-lines, form what is known as the

HashPad, as shown in Figure 6.9.

HACC instruction: NeuraMem supports a special instruction for partial product accumu-

lation called hash accumulate, or simply HACC instruction. The bit layout of HACC instruction

is illustrated in Figure 6.10. Algorithm 4 presents a pseudocode of the HACC instruction, providing

clearer insight into its functionality.

Hash-Engine workflow: Figure 6.11 shows a typical sequence of events during the ex-

ecution of a HACC instruction by the Hash-Engine (illustrated using pseudocode in Algorithm 4).

opcode Reg 1 Reg 2 Reg 3 Reg 4

8 bits 22 bits 22 bits 22 bits 22 bits

Reg 0

32 bits

128 bits

Instruction

Figure 6.8: MMH4 instruction bit layout.
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The process starts in step 1 , where the Hash-Engine receives a HACC instruction from the Neura-

Core units. This instruction’s TAG is simultaneously compared with all the TAGs currently present

on the HashPad (step 2 ). The multiplexers select the hash-line with the matching TAG in step 3 .

The corresponding hash-line’s DATA gets accumulated with the HACC instruction’s data. Simulta-

neously, the counter for that hash-line is decremented by one (step 4 ). The accumulated data and

the updated counter are then written back to the HashPad in step 5 . If the TAG from the instruction

does not match any of the TAGs in the HashPad in step 2 , the Hash-Engine creates a new entry for

the hash instruction and stores its content in a new hash-line.

Algorithm 4: HACC Instruction Execution
1: index← Hash(TAG)
2: if tag array[index] == EMPTY then
3: data array[index]← DATA
4: counter array[index]← COUNTER
5: else if tag array[index] == TAG then
6: data array[index] += DATA
7: counter array[index] −= 1
8: if counter array[index] == 0 then
9: Hash Line Eviction Routine

10: end if
11: else
12: Hash Collision Routine
13: end if

Rolling Evictions: The Hash-Engine monitors the completion of partial product accu-

mulation (via the COUNTER, as seen in Figure 6.9. Once the COUNTER reaches zero, indicating

that all partial products for a particular TAG have been accumulated, the Hash-Engine automatically

evicts the corresponding hash-line, and the accumulated result is written back to the main memory

(HBM). This ensures that the hashed partial product spends the minimal possible number of cycles

in the HashPad, addressing the memory bloat issue.

6.6.5 Dynamically Reseeding Hash-based Mapping

The performance benefits provided by the NeuraChip accelerator are primarily due to our

sparsity-agnostic mapping algorithm, named Dynamically Reseeding Hash-based Mapping (DRHM).

DRHM is designed to eliminate computational patterns, promoting an even distribution of workload

across all computational resources. Traditional hash-based mappings often lead to concentrated ar-
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eas of high activity, known as hot spots, especially when the hash function is optimized for a specific

sparsity pattern but encounters a different one. An ideal solution would involve uniformly distribut-

ing computational tasks across resources. One such method is random mapping, where tasks are

allocated to random resources. However, maintaining consistency in random mapping requires ex-

tensive record-keeping (a large lookup table), which is impractical.

We introduce a hybrid approach, Dynamically Reseeding Hash-based Mapping (DRHM),

which combines the advantages of consistent lookup times in hashing, a distribution akin to random

mapping, and minimal overhead similar to small lookup tables. This method significantly reduces

the occurrence of hot spots in the allocation of computational resources.

DRHM utilizes a flexible mapping that adjusts based on a ‘seed’ parameter, denoted as

γ. This parameter is specifically designed to alter the mapping, and consequently, the hash function

dynamically. After each row of the input sparse matrix is computed, γ is initialized with a random

number. DRHM offers two implementation approaches: one using the k upper bits of the TAG, and

the other utilizing the k lower bits of the TAG. The lower-bit and upper-bit hashing equations that

accommodate γ seed are presented in Equations 6.3 and 6.4.

Hl(TAG32, γ) = ((TAG32 ≪ k)≫ k) · γ mod N (6.3)

Hh(TAG32, γ) = ((TAG32 ≫ k)≪ k) · γ mod N (6.4)

where TAG represents the unique identifier for each row of the input graph. The term γ

acts as a ‘seed’ to introduce randomness in the mapping. N signifies the total number of available

output hash spaces. The operations “≪ k” and “≫ k” refer to bitwise left and right shifts by k po-

sitions, respectively. The modulus operation mod ensures that the result of the hash function falls

within the predefined range of the hash table. These equations assume that the bit-shift operations

conform to standard behavior where bits shifted beyond the boundary of the number’s bit-width are

discarded.

In our experiments, we assessed both upper k-bit address hashing and lower k-bit address

hashing. We found that the lower k-bit address hashing method had a lower incidence of hash

collisions, due to the higher variability in the lower bits of the address. Consequently, in all the

work presented here, we employ the lower k-bit address hashing technique (Equation 6.3). The

efficiency of compute mapping using our DRHM approach is evaluated in detail in Section 6.7.
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Table 6.2: Individual Component Configuration

Component Elements Tile-4∗ Tile-16∗ Tile-64∗

NeuraCore

Registers per pipeline 4 8 16
Pipelines 2 4 8
Multipliers 2 4 8
Address Generators 1 2 2
Ports 4 4 4

NeuraMem

TAG Comparators 1 4 8
Hash-Engines 2 4 8
Hashlines 4096 2048 2048
Accumulators 128 256 512
Ports 4 4 4

∗Values represent the count of elements per component across three tile configurations.

6.7 Exploring the Design Space of NeuraChip

The flexibility of our NeuraSim simulator, which is used to simulate our NeuraChip ac-

celerator, enables us to evaluate multiple NeuraChip configurations. We have two primary design

goals: i) optimizing resource utilization across the accelerator to enhance speedup and ii) striking

a balance between performance, chip area, and power consumption to make sure the advantages

outweigh the costs.

Tile Size Variation: We introduce three distinct configurations of NeuraChip, named

Tile-4, Tile-16, and Tile-64, derived from experimenting with various workloads. The detailed con-

figurations of NeuraCore and NeuraMem components are provided in Table 6.2, while the overall

accelerator configurations for these tile sizes are listed in Table 6.3. We focus on six key parameters

to assess the architectural impact of these configurations, as shown in Figure 6.12.

Key observations include:

• Register File Size: Expanding the register file size allows more MMH4 instructions to be

in-flight and increases the number of read memory instructions that can be issued to HBM.

Beyond 8 registers per pipeline (1024 bits per pipeline), we noticed that the DRAM channels

are unable to keep up with the high memory demands. This bottleneck is evident in the rise

in the cycles per instruction (CPI) and the number of stall cycles, as shown in Figure 6.12.

• HashPad Size: Choosing between smaller HashPads with a larger number of NeuraMems

versus larger HashPads with fewer NeuraMems, the former proves advantageous for handling

extremely sparse matrices. This configuration benefits from high accumulation throughput as
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Table 6.3: NeuraChip Configuration

Parameter Tile-4∗ Tile-16∗ Tile-64∗

Tile Count 8 8 8

NeuraCores per tile 4 16 64

Total NeuraCores 32 128 512

NeuraMems per tile 4 16 64

Total NeuraMems 32 128 512

Memory Controller Count 8 8 8

Routers per tile 8 32 128

Total Routers 64 256 1024

Total Pipelines 64 512 4096

Register File Size per pipeline (bits) 512 1024 2048

Total Hash-Engines 64 512 4096

TAG comparators per Hash-Engine 2 4 8

Total TAG comparators 128 2048 32768

Total HashPad Size (MB) 1.5 3 12

Max operating frequency (GHz) 1 1 1
∗Values represent the count of components/elements across the entire NeuraChip accelerators for three different tile configurations.

the number of accumulators increases with the number of NeuraMems. This can be seen in

the larger number of in-flight HBM memory instructions in Figure 6.12.

• Component Counts: With 32, 128, and 512 NeuraCores and NeuraMems in Tile-4, Tile-

16, and Tile-64, respectively, while more components enhance peak compute throughput, the

configuration is bound by a peak DRAM bandwidth of 128 GB/s. Additionally, workloads

do not require a 12 MB on-chip memory HashPad (of tile-64 configuration).

Hash-based Mapping Algorithm Variations: We tested four hash-based mapping schemes.

The first, a ring-based mapping (see Figure 6.13), follows round-robin resource allocation, though

encounters hot spots in workload distribution. The second, a modular hash-based mapping, uses

prime numbers for workload mapping, proposed in previous studies [71, 137, 166, 211]. DRHM,

shown in Figure 6.13, addresses hot spots in modular and ring-based mappings by reseeding the

hash function after each row of computations. Lastly, we evaluate a random mapping that maintains
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a lookup table for each entry. All four techniques are compared in Figure 6.14 for varying sparsity

patterns.

Variations in MMH and HACC Instructions: NeuraChip introduces MMH and HACC in-

structions (bit layout of these instructions is illustrated in Figure 6.8 and Figure 6.10), supporting its

decoupled architecture. We analyze the cycle count of various MMH instruction tile sizes, presented

in a CPI histogram in Figure 6.15. MMH4 emerges as the top choice, balancing temporal locality

benefits and cycle count.

We compare the HACC instruction’s efficiency using two eviction schemes: barrier-based

eviction (HACC-BE) and our rolling eviction approach (HACC-RE). The latter’s superiority in re-

ducing average cycle completion is seen in Figure 6.16.

6.8 NeuraChip Evaluation

6.8.1 Experimental Setup

To evaluate the benefits of NeuraChip, we perform benchmarking across two distinct cat-

egories of workloads. The first category involves examining NeuraChip’s efficiency in handling

sparse matrix multiplication tasks. This evaluation uses a standard array of sparse matrices obtained

from the Stanford SNAP sparse matrix collection [109]. Our evaluation includes a comparison with

some of the latest state-of-the-art sparse matrix accelerators [210,212] and off-the-shelf mainstream

hardware platforms. NeuraChip is benchmarked against the Intel MKL library [185] with an Intel

Xeon E5-2630 CPU. We also compare against cuSPARSE [135] and CUSP [43] NVIDIA libraries,

as run on a Hopper architecture H100 GPU, and we also consider for comparison an AMD’s MI100

GPU using the hipSPARSE library with a rocSPARSE backend [27, 150]. For accelerator com-

parisons, we compare NeuraChip against OuterSPACE [142] SpArch [212], and Gamma [210].

Additionally, as to the second category of workloads, our evaluation targets a Graph Convolutional

Network (GCN) [102] layer using various datasets, allowing us to compare NeuraChip against ex-

isting Graph Neural Network (GNN) accelerators EnGN [118], GROW [86], HyGCN [199], and

FlowGNN [153].

6.8.2 Simulator Framework

In this study, we present NeuraSim, a cycle-accurate, multi-threaded, modular simulation

engine inspired by the Structural Simulation Toolkit (SST) [151]. NeuraSim’s modular framework
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Figure 6.12: Architectural impact of GCN model varying tile configuration on Cora dataset. Values
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Figure 6.13: Compute mapping heat map, where the X-axis represents multiplications mapped to
NeuraCores and Y-axis represents accumulations mapped to NeuraMem.
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Figure 6.14: Computation mapping heat maps for four distinct hash-based mapping methods, eval-
uated across five sparse matrices and one dense matrix multiplication. The dynamic reseeding
mapping technique is insensitive to sparsity patterns and effectively addresses hot spots in dense
matrix computations.
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allows for flexible integration of new architectural features, without the need for an entire overhaul

of the simulation engine. Developed using POSIX threads (pthreads), NeuraSim facilitates par-

allel simulation. Its dispatcher unit recognizes independent tasks and concurrently executes them on

different threads. Additionally, NeuraSim employs MongoDB for backend data storage. NeuraSim

also incorporates HBM2 memory simulation, integrating with DRAMsim3 [113], a cycle-accurate

and validated DRAM simulator.

Regarding simulation efficiency, NeuraSim achieves 112 Kilocycles per second (KCPS),

48 KCPS, and 11 KCPS on average for the Tile-4, Tile-16, and Tile-64 configurations, respectively.

NeuraSim is open-source and faithfully simulates the extended NeuraChip ISA. The NeuraSim

source code is accessible on our GitHub repository12.

6.8.3 Comparative Analysis with Sparse Matrix Accelerators

In Figure 6.17, the performance of the NeuraChip in sparse matrix multiplication tasks

is compared against various off-the-shelf high-end CPU and GPU platforms, as well as against

state-of-the-art SpGEMM accelerators.

NeuraChip provides benefits when compared to Intel’s MKL running on an Xeon CPU,

surpassing it by a factor of 22.1×. Additionally, when compared against NVIDIA’s H100 GPU

using the CUSP library, NeuraChip achieves a performance boost of 13.3×. In comparison to

the prior leading sparse matrix multiplication accelerator, Gamma, NeuraChip achieves an average

performance improvement of 1.5×.

As we can see, NeuraChip outperforms the CPU and GPU computing platforms in all

cases. In particular, average performance improvements of 22.2× over the CPU, a 17.1× and

13.3× average speedup over the NVIDIA Hopper GPU using the cuSPARSE and CUSP libraries,

respectively, and 16.7× speedup on average over the AMD’s MI100 GPU using the hipSPARSE

library.

Further, the performance of NeuraChip is evaluated against two outer-product-based sparse

matrix accelerators: OuterSPACE [142] and SpArch [212]. While OuterSPACE leverages input data

reuse, it encounters excessive generation of partial products (the memory bloat issue), leading to de-

graded performance. SpArch addresses this with on-chip merger trees; however, these trees require

large comparator arrays, occupying about 60% of the chip area. NeuraChip counters the memory

bloat through an on-chip cache organization with rolling counters, effectively managing the evic-
1https://github.com/NeuraChip/neurachip
2https://neurachip.us/
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tion of accumulating partial products and alleviating the bloat issue. In comparison, NeuraChip

surpasses OuterSPACE and SpArch by factors of 6.6× and 2.4×, respectively.

Additionally, the performance of NeuraChip is compared with a row-wise product-based

SpGEMM accelerator, Gamma [210], which is based on Gustavson’s algorithm. Gamma employs

a resource-intensive storage mechanism, FiberCache, to prefetch data, aiming to reduce data fetch

latency and prevent compute stalls. However, this approach results in data remaining idle in the

caches prior to being accessed by the processing elements. NeuraChip, in contrast, optimizes on-

chip storage through a rolling-eviction strategy, enabling automatic eviction of partial products after

the reduce operation is complete. Against Gamma, NeuraChip demonstrates a performance superi-

ority of 1.5× average speedup.

6.8.4 Comparative Analysis of GNN Accelerators

In Figure 6.18, we compare the GNN performance of NeuraChip against various state-of-

the-art GNN accelerators. The NeuraChip configuration used for GNN assessment differs from that

used to compare to SpGEMM accelerators in Table 6.3. Specifically, for the Tile-16 configuration in

the GNN accelerator analysis, an architecture comprising 8 tiles is used. Each tile includes a 16×16
grid of NeuraCores, with each core featuring a quad-pipeline design. We have significantly reduced

the number of TAG comparators and port buffers, while retaining the hashpad sizes. This particular

configuration is capable of delivering a peak performance of 8192 GFLOPs, with an average power

consumption of 4.3W.

First, we consider EnGN, a hash-based GNN accelerator [118], and GROW [86]. EnGN

employs a unique ring-based edge reducer to efficiently map vertex IDs. However, it encounters

challenges in achieving a uniform distribution of computational tasks among its processing ele-

ments. In comparison, NeuraChip demonstrates superior performance, outperforming EnGN by

29% on average. This improvement is primarily attributed to the dynamic reseed hashing func-

tion within NeuraChip, which ensures balanced task distribution across its computational resources,

namely NeuraCore and NeuraMem, thus minimizing processing delays.

GROW utilizes a row-wise multiplication method, incorporating hardware and software

co-design elements. A notable aspect of GROW’s software strategy is its reliance on graph par-

titioning, which significantly increases the computational overhead for GNN processing. From a

hardware perspective, GROW is equipped with vector processors and employs streaming buffers

for handling input and output matrix data. Despite these features, GROW encounters issues sim-
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ilar to those seen in Gamma’s prefetcher system, where data idling results in suboptimal usage of

on-chip memory resources. Comparative performance metrics indicate that NeuraChip surpasses

GROW’s performance by an average of 58%.

Next, we evaluate our accelerator compared to HyGCN, a hybrid Graph Neural Network

(GNN) accelerator, which has specialized engines for aggregation and combination phases [199].

The primary advantage of HyGCN’s architecture is its ability to pipeline computations, which is

particularly beneficial for GNN layers that typically alternate between aggregation and combination

phases. However, a significant limitation arises when the compute duration for one phase substan-

tially exceeds the other, leading to a pipeline stall due to the uneven execution duration of each

pipeline stage.

Instead, NeuraChip incorporates distinct components specifically for multiplication and

accumulation operations, utilized in both the aggregation and combination phases. This design

choice renders NeuraChip impervious to the inefficiencies caused by varying computational times

between aggregation and combination phases. On average, NeuraChip outperforms HyGCN’s per-

formance by 69%.

Our final comparison is with FlowGNN [153], a reconfigurable dataflow GNN acceler-

ator comprising Node Transformation Units (NTs) and Message Passing Units (MPs). FlowGNN

employs queues for real-time task buffering and relies on dynamic pull-based mapping for task

distribution to NTs and MPs. In contrast, NeuraChip adopts a push-based mapping strategy for

multiplication tasks and a hash-based approach for accumulation tasks. The Dispatcher in Neu-

raChip assigns MMH4 instructions to NeuraCores, optimizing input data temporal locality (reuse in

NeuraCore register files). The dynamic reseeding hash-based mapping, as detailed in Section 6.6.5,

ensures uniform workload distribution regardless of sparsity patterns. Consequently, NeuraChip

achieves an average speedup of 30% over GCN workloads tested on the FlowGNN architecture.

6.8.5 Power Consumption and Area Analysis

We assess our accelerator’s area and power overheads by implementing its design in Reg-

ister Transfer Level (RTL). Using Cadence Genus Synthesis Solutions, we synthesize these RTL

components targeting an ASAP7 technology library [40], allowing us to determine the area and

power consumption for each proposed microarchitectural element. The synthesized chip area re-

quirements for NeuraChip amount to 2.37mm2, 10.2mm2, and 35.26mm2 for the Tile-4, Tile-16,

and Tile-64 configurations, respectively.
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Figure 6.15: Cycles Per Instruction (CPI) histogram plot for four MMH instructions with varying tile
sizes.

Table 6.4: NeuraChip Power and Area Breakdown

Area (mm2) Average Power (W)
Unit Tile-4 Tile-16 Tile-64 Tile-4 Tile-16 Tile-64

NeuraCore 0.28 2.74 9.36 1.05 1.86 5.76

NeuraMem 1.22 5.10 18.64 6.85 7.36 11.19

Router 0.49 1.98 6.88 2.15 4.88 4.43

Memory Controller 0.38 0.38 0.38 1.41 1.96 2.84

Total 2.37 10.2 35.26 11.46 16.06 24.22
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Figure 6.18: Percentage speedup of Tile-16 configuration over prior GNN accelerators with GCN
workload over different graph datasets.

The breakdown of NeuraChip’s area and power is shown in Table 6.4. The majority of the

area requirement for NeuraChip is allocated to the NeuraMem unit, as it includes the tag comparator

array and the hash-pad (on-chip storage).

6.9 Comparison with Prior Custom Accelerators

Next, we discuss previous studies on sparse matrix multiplication (spGEMM) and Graph

Neural Networks (GNN).

SpGEMM Accelerators: InnerSP [10] introduces an accelerator that applies the inner-

product method for matrix multiplication. This method offers advantages, such as eliminating the

need for on-chip memory for accumulation. However, it suffers from limited input data reuse from

both matrices, leading to performance issues when the sparsity patterns do not align with their task

mapping algorithm. MatRaptor [169] employs a row-wise multiplication strategy and a round-robin

greedy algorithm for allocating input rows to processing elements (PEs). Although this approach

enhances input data reuse, it struggles with skewed sparsity patterns. The simplistic round-robin dis-

tribution may result in computational hot spots (as elaborated in Section 6.7). SIGMA [147] offers

an SpGEMM accelerator equipped with adaptable interconnects. Utilizing a smart global controller,

SIGMA dynamically assigns each non-zero pair to PEs via a Benes network. Despite its efficiency

in general SpGEMM tasks, SIGMA is less effective with large sparse matrix computations due to

the substantial overhead introduced by its bitmap compression format.
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Table 6.5: Performance comparison of SpGEMM workload accelerators across various off-the-shelf
hardwares.

Architectural Parameters Xeon E5 NVIDIA H100 AMD MI100

Compute Units 8 Cores AVX2 7296 FP64 7680 FP64

Frequency (GHz) 2.9 1.6 1.5

Peak Performance 186 GFLOPs 26 TFLOPs 11.5

SpGEMM Perf.Φ (GOP/s) 1.12 1.86 1.48

On-chip Memory 15 MBτ 50 MB† 8 MB†

Off-chip Memory DDR4 136GB/s HBM 2TB/s HBM 1.2TB/s

Technology (nm) 32 4 7

Area (mm2) 356 814 750

Power (W ) 85⋄ 300⋄ 300⋄

Tile-16 Speedup 22.1× 13.3× 16.7×
⋄Max thermal dissipation power from datasheet

† L2 cache size τ L3 cache size ΦComputed on common set of matrices as shown in Table 6.1.

GNN Accelerators: LISA [115] performs GNN computations on Coarse-Grained Re-

configurable Arrays (CGRAs). LISA generates a dataflow graph and utilizes a simulated annealing

method for mapping. I-GCN [66] aims to enhance data locality through an islandization strategy,

clustering densely connected nodes to reduce off-chip memory accesses. However, both the simu-

lated annealing and graph clustering methods introduce considerable computational overheads.

6.10 NeuraChip Summary

In this thesis we presented, NeuraChip, that demonstrates the potential advantages that

sparse matrix multiplication workloads can gain from a decoupled architectural design. NeuraChip

optimizes multiplication and aggregation phases separately using two distinct components. We

have presented an open-source3, cycle-accurate simulator called NeuraSim, used to demonstrate

the effectiveness of our design. The acceleration of GNN workloads is achieved through a blend

of high-level optimizations and microarchitectural features. We have synthesized our design using

RTL, thereby allowing us to calculate power and area requirements for various NeuraChip Tile sizes.

NeuraChip is able to outperform state-of-the-art SpGEMM accelerator by a factor of 1.5× and prior

GNN accelerator by 1.46× on average.

3https://github.com/NeuraChip/neurachip
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Table 6.6: Performance comparison of state-of-the-art SpGEMM accelerators across various Neu-
raChip (NC) system configurations.

Architectural
Parameters

Outer
SPACE

SpArch Gamma NC
Tile-4

NC
Tile-16

NC
Tile-64

Compute Units 256 PEs 2× 8 Mults
16 × 16
Merger

32 PEs
Radix-64

2× 4
Neura-
Cores

2× 16
Neura-
Cores

2× 64
Neura-
Cores

Frequency
(GHz)

1.5 1 1 1 1 1

Peak
Performance

384
GFLOPs

32
GFLOPs

32
GFLOPs

8
GFLOPs

32
GFLOPs

128
GFLOPs

SpGEMM
Perf.Φ

(GOP/s)

2.9 10.4 16.5 5.15 24.75 30.69
93.17α

On-chip
Memory

4 MB 15 MB⋆ 3 MB∗ 0.75 MBδ 3 MBδ 12 MBδ

Off-chip
Memory

HBM
128GB/s

HBM
128GB/s

HBM
128GB/s

HBM
128GB/s

HBM
128GB/s

HBM
128GB/s

Technology
(nm)

32 40 45 7 7 7

Area (mm2) 86.74 28.49 30.6‡

20.44‡
2.37 10.2 35.26

Power (W ) 24 9.26 ❖ 11.46 16.06 24.22

Energy
Efficiency

(GOPS/W )

0.120 1.123 ❖ 0.449 1.541 1.266

Area Efficiency
(GOPS/mm2)

0.034 0.365 0.539 2.171 2.426 0.870

Tile-16 Speedup 6.6× 2.4× 1.5× 4.8× 1× 0.807×
❖Gamma does not provide a power performance model δHashPad Size ∗FiberCache Size

α Simulated using dual stacked HBM providing peak bandwidth of 256 GB/s ‡Gamma synthesizes accelerator using both 45 nm and
40 nm processes, resulting in computing areas of 30.6mm2 and 20.44mm2, respectively

⋆Represents column fetchers, row prefetchers, and partial matrix fetchers and writers. ΦComputed on common set of matrices as
shown in Table 6.1.
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Chapter 7

Conclusion

This dissertation presents the design and implementation of accelerators for graph com-

puting. Accelerating graph computations poses significant challenges due to the irregular structure

of graphs. Through this research, we contribute to the field in three major aspects. Firstly, we ana-

lyze the architectural implications of Graph Neural Networks (GNNs) on GPUs and state-of-the-art

accelerators. Secondly, we develop algorithmic strategies to enhance the Sparse Generalized Matrix

Multiply (SpGEMM) kernel, which is crucial for GNN workloads. Lastly, we introduce a custom

Coarse-Grained Reconfigurable Array (CGRA)-based accelerator for GNNs, designed to overcome

the bottlenecks identified during GNN profiling.

7.1 GNN Workload Characterization

This dissertation introduces GNNMark, a comprehensive benchmark suite specifically

designed to evaluate the performance of Graph Neural Networks (GNNs) on GPUs. This initiative

marks the first attempt within the architectural research community to focus on a GNN training-

oriented benchmark suite. Utilizing GNNMark, we conduct an in-depth analysis of GNN workloads

to identify the architectural challenges associated with training GNN models on GPU platforms.

Our findings contribute novel insights into the primary architectural bottlenecks encountered during

GNN training, alongside strategies for their potential mitigation.

The performance characteristics of a single GNN model can vary significantly based on

the input graph’s structure. Contrary to Deep Neural Networks (DNNs), where General Matrix

Multiply (GEMM) and convolution operations predominate, our analysis reveals that graph pro-

cessing within GNNs predominantly requires integer operations. This observation highlights the

105



7.2. SMASH: GNN ALGORITHMIC ACCELERATION

need for enhancing integer computation performance to improve overall GNN execution efficiency.

Moreover, our study highlights a substantial impact of instruction fetch stalls on GNN performance,

indicating that GPU instruction cache limitations could serve as a significant bottleneck. Addition-

ally, our research presents findings on the sparsity observed during GNN training and the efficacy

of strong scaling, thereby offering a comprehensive overview of the performance dynamics of GNN

training on GPU systems.

7.2 SMASH: GNN Algorithmic Acceleration

Further in this dissertation , we describe the advancements made in the domain of SpGEMM

algorithmic acceleration, encapsulating a series of pivotal contributions towards optimizing SpGEMM

kernels. The cornerstone of this effort is characterized by a multifaceted analysis aimed at identi-

fying the inherent challenges in developing efficient SpGEMM kernels. This investigation covers

a critical evaluation of various sparse matrix multiplication techniques, scrutinizing the merits and

drawbacks inherent to each method.

A significant development in this research is the development of a novel sparse matrix

storage format, termed as MAPCSR (Memory Aligned Parallel CSR). This innovative approach

facilitates parallel computation of each sparse matrix row, significantly enhancing memory access

efficiency through memory-aligned storage. The implementation of MAPCSR has demonstrably

bolstered SpGEMM performance, yielding a remarkable 1.58× improvement.

Building upon these foundational advancements, we introduce SMASH (Sparse Matrix

Atomic Scratchpad Hashing), an optimized SpGEMM kernel tailored for distributed memory ar-

chitectures. SMASH is implemented in three distinct versions, each iteration exploiting specific

architectural features to incrementally enhance performance. This tiered approach not only exem-

plifies the adaptability and scalability of SMASH but also underpins its efficacy in leveraging the

unique capabilities of custom accelerators. The iterative development of SMASH in this dissertation

significantly propels forward the state-of-the-art in SpGEMM algorithmic acceleration.

7.3 NeuraChip: GNN Hardware Acceleration

This segment of the dissertation introduces NeuraChip, a state-of-the-art spatial acceler-

ator tailored for Graph Neural Network workloads, marking a significant stride in hardware accel-
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eration for graph computing. The design and implementation of NeuraChip embodies a series of

innovative contributions that collectively address critical challenges in GNN acceleration.

Heterogeneous Processing Approach: Central to NeuraChip’s architecture is a hetero-

geneous processing strategy that divides computation tasks into distinct multiplication and accumu-

lation phases. This decoupled computation pipeline is meticulously designed to improve data reuse,

optimizing the efficiency of operations through strategic component mapping.

Adaptive Hash-Based Compute Mapping: NeuraChip incorporates an adaptive, dy-

namic reseeding hash-based compute mapping (DRHM) mechanism, specifically engineered for

GNN computations. Leveraging the consistent lookup times provided by hash functions, DRHM

distributes computing tasks across the accelerator’s resources. By dynamically updating the seed at

regular computation intervals, it ensures an uniform workload distribution, effectively neutralizing

the challenges posed by the varying sparsity patterns inherent in graph data.

Mechanism for Rolling Evictions: To address the bottleneck of memory congestion, a

consequence of accumulating partial products, NeuraChip introduces a novel rolling eviction strat-

egy. This approach facilitates the timely eviction of partial products, thereby mitigating memory

bloat and ensuring sustained high throughput.

NeuraChip establishes itself as a significant development in the domain of hardware ac-

celeration of GNNs, showcasing an architecture that is not only highly efficient but also adaptable

to the diverse and dynamic nature of graph-based computations. The NeuraChip segment of this

dissertation underscores the potential of specialized hardware designs in overcoming the unique

challenges of accelerating GNN workloads, paving the way for future innovations in the field.

7.4 Contributions of this Dissertation

This dissertation has been dedicated to advancing the field of Graph Neural Network

acceleration through a comprehensive exploration of both hardware and software aspects. It has

established a new benchmark in the study of GNNs, providing a suite of contributions that lay a

solid foundation for future research in this domain. These contributions span from the develop-

ment of benchmark suites for GNN evaluation to novel algorithmic strategies for sparse matrix

multiplication, and from the introduction of an innovative hardware accelerator to the creation of

a cycle-accurate simulator for Coarse-Grained Reconfigurable Arrays (CGRA). Specifically, this

work includes:
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1. The development of a benchmark suite specifically designed for assessing GNN performance,

addressing both single and multi-GPU environments. This suite facilitates a nuanced under-

standing of GNN workloads, enabling targeted improvements in GPU-based graph process-

ing.

2. The presentation of GPU and multi-GPU benchmarking results for GNNs, which shed light

on the architectural implications of GNN workloads. These insights contribute to the opti-

mization of GPU resources for enhanced GNN processing efficiency.

3. The introduction of a novel sparse matrix storage format that significantly advances the state

of SpGEMM (Sparse Generalized Matrix Multiply) operations. This format underpins the

algorithmic optimizations for SpGEMM workloads, demonstrating substantial performance

improvements.

4. An in-depth evaluation of SpGEMM optimizations on a custom accelerator, showcasing the

potential of hardware-specific adaptations to elevate GNN processing speeds.

5. The proposal of a dynamically reseeding hash-based mapping algorithm tailored for GNN

workloads, which optimizes computation distribution and efficiency in hardware accelerators

designed for GNNs.

6. The creation of NeuraSim, a cycle-accurate simulator for CGRA architectures, facilitating

precise analysis and optimization of GNN accelerator designs.

7. A comprehensive chip power and area analysis of the NeuraChip GNN accelerator, providing

valuable metrics for assessing the viability and efficiency of GNN-specific hardware solu-

tions.

Together, these contributions not only provide a path towards optimized GNN processing

but also equip the research community with the tools and methodologies necessary for continued

innovation in the acceleration of graph neural networks.

7.5 Future Work

The primary objective of this dissertation was to advance the field of Graph Neural Net-

work acceleration through a comprehensive exploration of benchmark suites, algorithmic optimiza-

tions, and hardware solutions. Despite the significant strides made in this research, the domain of
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GNN acceleration remains vast, with ample opportunities for further exploration and innovation.

The following outlines potential directions for future research, building upon the foundational work

presented in this thesis:

1. Enhanced Integration of GNN Workloads with Emerging Hardware Accelerators: The

current landscape of hardware accelerators, including but not limited to NVIDIA’s Tensor

Cores [122] and Google’s TPUs [99, 107], presents a promising avenue for improving GNN

performance and energy efficiency. Future work could explore deeper integrations with these

accelerators, adapting GNN algorithms to leverage their specific architectural advantages

more effectively.

2. Advanced Memory Technologies for GNN Acceleration: The evolution of memory tech-

nologies, such as in-memory processing [85] and near-memory processing [95], offers new

possibilities for enhancing GNN execution. Investigating holistic designs that incorporate

these advanced memory solutions could lead to significant improvements in GNN processing

speed, energy efficiency, and overall system performance.

3. Scalability and Efficiency in Multi-GPU Systems: While this dissertation addressed multi-

GPU benchmarking and architectural implications for GNNs, scaling performance linearly

with the addition of GPUs remains a challenge. Future research could focus on developing

new techniques for GPU-level cooperative thread array (CTA) [93] scheduling and thread

migration [42] to minimize performance overhead in multi-GPU systems.

4. Dynamic Scheduling and Control Flow Optimization for GNN Workloads: Addressing

the limitations in control flow transition between CPUs and GPUs is crucial for optimizing

the performance of GNN workloads [98]. Investigating hardware-based GPU schedulers in-

tegrated into CPU cores could reduce kernel-launch overhead and memory synchronization

challenges, enabling more efficient CPU-GPU collaboration.

5. Computing Capabilities in Network Devices for Distributed GNN Processing: As net-

work switches evolve to incorporate computing capabilities, there exists an opportunity to

offload certain GNN processing tasks to these devices, potentially reducing data movement

costs and improving the efficiency of distributed GNN training and inference [179].

6. Exploration of Novel Computing Devices for GNN Acceleration: The advent of novel

computing devices extends the horizon for GNN acceleration. Future research should con-
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sider incorporating a broader array of devices, including dedicated accelerators, non-traditional

memory devices, and smart network components, to achieve comprehensive performance, en-

ergy, reliability, and security enhancements.

Building on the contributions of this dissertation, these future research directions aim to

further push the boundaries of GNN acceleration, addressing the complex and evolving challenges

inherent in graph-based computations and fostering the development of more efficient, scalable, and

adaptable GNN processing systems.
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ator architecture. IEEE Transactions on Computers, 72(4):914–925, 2022.

[101] Kevin Kiningham, Christopher Re, and Philip Levis. Grip: A graph neural network acceler-

atorarchitecture. arXiv preprint arXiv:2007.13828, 2020.

[102] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional

networks. arXiv preprint arXiv:1609.02907, 2016.

[103] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional

networks. In International Conference on Learning Representations (ICLR), 2017.

[104] Vladimir Kiriansky and Nir Shavit. Avoiding algorithmic pitfalls for graph analytics with

lightnvm. In 2016 International Conference on Supercomputing, pages 4:1–4:13. ACM,

2016.

[105] Rik Koncel-Kedziorski, Dhanush Bekal, Yi Luan, Mirella Lapata, and Hannaneh Ha-

jishirzi. Text generation from knowledge graphs with graph transformers. arXiv preprint

arXiv:1904.02342, 2019.

121



BIBLIOGRAPHY

[106] Milind Kulkarni, Martin Burtscher, Calin Casçaval, and Keshav Pingali. Lonestar: A suite of
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case for in-network computing on demand. In Proceedings of the Fourteenth EuroSys Con-

ference 2019, pages 1–16, 2019.

[180] Nenad Trinajstic. Chemical graph theory. CRC Press, 1983.

[181] Johan Ugander, Brian Karrer, Lars Backstrom, and Cameron Marlow. The anatomy of the

facebook social graph. arXiv preprint arXiv:1111.4503, 2011.

[182] Yash Ukidave, Fanny Nina Paravecino, Leiming Yu, Charu Kalra, Amir Momeni, Zhongliang

Chen, Nick Materise, Brett Daley, Perhaad Mistry, and David Kaeli. Nupar: A benchmark

suite for modern gpu architectures. In Proceedings of the 6th ACM/SPEC International Con-

ference on Performance Engineering, pages 253–264, 2015.

[183] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural infor-

mation processing systems, pages 5998–6008, 2017.

[184] Oreste Villa, Mark Stephenson, David Nellans, and Stephen W Keckler. Nvbit: A dy-

namic binary instrumentation framework for nvidia gpus. In Proceedings of the 52nd Annual

IEEE/ACM International Symposium on Microarchitecture, pages 372–383, 2019.

[185] Endong Wang, Qing Zhang, Bo Shen, Guangyong Zhang, Xiaowei Lu, Qing Wu, Yajuan

Wang, Endong Wang, Qing Zhang, Bo Shen, et al. Intel math kernel library. High-

Performance Computing on the Intel® Xeon Phi™: How to Fully Exploit MIC Architectures,

pages 167–188, 2014.

[186] Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye, Mufei Li, Jinjing Zhou,

Qi Huang, Chao Ma, et al. Deep graph library: Towards efficient and scalable deep learning

on graphs. arXiv preprint arXiv:1909.01315, 2019.

[187] Pin-Han Wang and Wei-Sheng Chou. Network topology design and bandwidth allocation for

mpls/gmpls-based recovery. Journal of Lightwave Technology, 21(1):79–91, 2003.

[188] Wei Wei, Jordan Erenrich, and Bart Selman. Towards efficient sampling: Exploiting random

walk strategies. In AAAI, volume 4, pages 670–676, 2004.

130



BIBLIOGRAPHY

[189] Boris Weisfeiler and Andrei A Lehman. A reduction of a graph to a canonical form and

an algebra arising during this reduction. Nauchno-Technicheskaya Informatsia, 2(9):12–16,

1968.

[190] Peter Willett. The calculation of molecular structural similarity: Principles and practice.

Molecular Informatics, 25(2):127–136, 2006.

[191] Tak-Lam Wong, Yusheng Li, Zili Xu, and Jianer Chen. Frequent itemsets mining on big

transactional data. IEEE Transactions on Knowledge and Data Engineering, 27(8):2261–

2273, 2015.

[192] F. Y. Wu. Two-dimensional ising square lattices with a free boundary. Journal of Statistical

Mechanics: Theory and Experiment, 2004(10):P10020, 2004.

[193] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S Yu.

A comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks

and Learning Systems, 32(1):4–24, 2020.

[194] Xiaolong Xie, Yun Liang, Guangyu Sun, and Deming Chen. An efficient compiler framework

for cache bypassing on gpus. In 2013 IEEE/ACM International Conference on Computer-

Aided Design (ICCAD), pages 516–523. IEEE, 2013.

[195] Xiaolong Xie, Yun Liang, Yu Wang, Guangyu Sun, and Tao Wang. Coordinated static and

dynamic cache bypassing for gpus. In 2015 IEEE 21st International Symposium on High

Performance Computer Architecture (HPCA), pages 76–88. IEEE, 2015.

[196] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural

networks? arXiv preprint arXiv:1810.00826, 2018.

[197] Yuto Yamaguchi, Tsubasa Takahashi, Toshiyuki Amagasa, and Hiroyuki Kitagawa. Tu-

rank: Twitter user ranking based on user-tweet graph analysis. In Web Information Systems

Engineering–WISE 2010: 11th International Conference, Hong Kong, China, December 12-

14, 2010. Proceedings 11, pages 240–253. Springer, 2010.

[198] Mingyu Yan, Zhaodong Chen, Lei Deng, Xiaochun Ye, Zhimin Zhang, Dongrui Fan, and

Yuan Xie. Characterizing and understanding gcns on gpu. IEEE Computer Architecture

Letters, 19(1):22–25, 2020.

131



BIBLIOGRAPHY

[199] Mingyu Yan, Lei Deng, Xing Hu, Ling Liang, Yujing Feng, Xiaochun Ye, Zhimin Zhang,

Dongrui Fan, and Yuan Xie. Hygcn: A gcn accelerator with hybrid architecture. In 2020

IEEE International Symposium on High Performance Computer Architecture (HPCA), pages

15–29. IEEE, 2020.

[200] Jaewon Yang, Julian McAuley, and Jure Leskovec. Defining and evaluating network com-

munities based on ground-truth. In Knowledge Discovery and Data Mining, pages 745–754,

2012.

[201] Kai Yang and Mengqi Qi. Dynamic transportation routing using real-time data for logistics

applications. Transportation Research Part E: Logistics and Transportation Review, 110:46–

59, 2018.

[202] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning

with graph embeddings. In International conference on machine learning, pages 40–48.

PMLR, 2016.

[203] Pengcheng Yao, Long Zheng, Yu Huang, Qinggang Wang, Chuangyi Gui, Zhen Zeng, Xi-

aofei Liao, Hai Jin, and Jingling Xue. Scalagraph: A scalable accelerator for massively

parallel graph processing. In 2022 IEEE International Symposium on High-Performance

Computer Architecture (HPCA), pages 199–212. IEEE, 2022.

[204] Rozhin Yasaei, Shih-Yuan Yu, and Mohammad Abdullah Al Faruque. Gnn4tj: Graph neural

networks for hardware trojan detection at register transfer level. In 2021 Design, Automation

and Test in Europe Conference & Exhibition (DATE), pages 1504–1509. IEEE, 2021.

[205] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure

Leskovec. Graph convolutional neural networks for web-scale recommender systems. In

Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery

& Data Mining, pages 974–983, 2018.

[206] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features

in deep neural networks? Advances in neural information processing systems, 27, 2014.

[207] Haoran You, Tong Geng, Yongan Zhang, Ang Li, and Yingyan Lin. Gcod: Graph convolu-

tional network acceleration via dedicated algorithm and accelerator co-design. In 2022 IEEE

132



BIBLIOGRAPHY

International Symposium on High-Performance Computer Architecture (HPCA), pages 460–

474. IEEE, 2022.

[208] Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal graph convolutional networks:

A deep learning framework for traffic forecasting. In Proceedings of the 27th International

Joint Conference on Artificial Intelligence (IJCAI), 2018.

[209] Eva Zangerle, Martin Pichl, Wolfgang Gassler, and Günther Specht. # nowplaying music

dataset: Extracting listening behavior from twitter. In Proceedings of the first international

workshop on internet-scale multimedia management, pages 21–26, 2014.

[210] Guowei Zhang, Nithya Attaluri, Joel S. Emer, and Daniel Sanchez. Gamma: Leveraging

gustavson’s algorithm to accelerate sparse matrix multiplication. In Proceedings of the 26th

ACM International Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS), ASPLOS ’21, page 687–701, New York, NY, USA, 2021.

Association for Computing Machinery.

[211] Haowen Zhang, Yuandong Chan, Kaichao Fan, Bertil Schmidt, and Weiguo Liu. Fast and

efficient short read mapping based on a succinct hash index. BMC bioinformatics, 19:1–14,

2018.

[212] Zhekai Zhang, Hanrui Wang, Song Han, and William J Dally. Sparch: Efficient architecture

for sparse matrix multiplication. In 2020 IEEE International Symposium on High Perfor-

mance Computer Architecture (HPCA), pages 261–274, Piscataway, NJ, 2020. IEEE.

[213] Zhihui Zhang, Jingwen Leng, Lingxiao Ma, Youshan Miao, Chao Li, and Minyi Guo. Ar-

chitectural implications of graph neural networks. IEEE Computer Architecture Letters,

19(1):59–62, 2020.

[214] Ziwei Zhang, Peng Cui, and Wenwu Zhu. Deep learning on graphs: A survey. IEEE Trans-

actions on Knowledge and Data Engineering, 2020.

[215] Da Zheng, Minjie Wang, Quan Gan, Zheng Zhang, and George Karypis. Learning graph

neural networks with deep graph library. In Companion Proceedings of the Web Conference

2020, pages 305–306, 2020.

133



BIBLIOGRAPHY

[216] Ruohuang Zheng and Sreepathi Pai. Efficient execution of graph algorithms on cpu with

simd extensions. In 2021 IEEE/ACM International Symposium on Code Generation and

Optimization (CGO), pages 262–276. IEEE, 2021.

[217] Caiming Zhong, Duoqian Miao, and Ruizhi Wang. A graph-theoretical clustering method

based on two rounds of minimum spanning trees. Pattern Recognition, 43(3):752–766, 2010.

[218] Dengyong Zhou, Bernhard Schoelkopf, and Thomas Hofmann. Graph embedding and ex-

tensions: A general framework for dimensionality reduction. IEEE transactions on pattern

analysis and machine intelligence, 29(1):40–51, 2009.

[219] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng

Wang, Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and

applications. AI open, 1:57–81, 2020.

[220] Hongyu Zhu, Mohamed Akrout, Bojian Zheng, Andrew Pelegris, Anand Jayarajan, Amar

Phanishayee, Bianca Schroeder, and Gennady Pekhimenko. Benchmarking and analyzing

deep neural network training. In 2018 IEEE International Symposium on Workload Charac-

terization (IISWC), pages 88–100. IEEE, 2018.

[221] Rong Zhu, Kun Zhao, Hongxia Yang, Wei Lin, Chang Zhou, Baole Ai, Yong Li, and Jingren

Zhou. Aligraph: a comprehensive graph neural network platform. Proceedings of the VLDB

Endowment, 12(12):2094–2105, 2019.

134



Biography

Kaustubh Shivdikar was born in Mumbai, India, on December 5, 1994. He obtained his

Bachelor of Science degree in Electrical Engineering from the Veermata Jijabai Technological In-

stitute, University of Mumbai, in 2016. He went on to receive his Master of Science and Doctor of

Philosophy degrees in Electrical and Computer Engineering from Northeastern University, Boston,

USA, in May 2020 and May 2024, respectively. His Ph.D. research was supervised by Dr. David

Kaeli at the Northeastern University Computer Architecture Research (NUCAR) Laboratory. Kaus-

tubh is a member of IEEE and ACM. His research fields encompass Computer Architecture Simu-

lator Design, Graph Neural Network Accelerators, Sparse Matrix Accelerators, and Homomorphic

Encryption Accelerators.1

1https://wiki.kaustubh.us

135

https://wiki.kaustubh.us

	Cover
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	Acknowledgments
	Abstract of the Dissertation
	1 Introduction
	1.1 Background and Motivation
	1.2 Challenges in Accelerating Graph Computing
	1.2.1 Scalability Concerns in Graph Neural Networks
	1.2.2 Task-Level Parallelism in Graph Computations
	1.2.3 Data Spatial Locality and Computational Irregularity

	1.3 Objectives and Contributions
	1.4 Dissertation Organization

	2 Fundamentals of Graph Computing and Accelerator Architectures
	2.1 Graph Theory Basics
	2.1.1 Graph Properties
	2.1.2 Types of Graphs
	2.1.3 Graph Representation
	2.1.4 Graph Transformation

	2.2 Machine Learning on Graphs
	2.2.1 Graph Neural Networks
	2.2.2 Graph Convolutional Networks
	2.2.3 Graph Isomorphism Networks
	2.2.4 Graph Attention Networks
	2.2.5 GraphSAGE
	2.2.6 Principal Neighborhood Aggregation

	2.3 Graph Neural Network Frameworks
	2.4 Accelerators: An Overview
	2.4.1 Unique Advantages of Accelerators
	2.4.2 Advantages and Disadvantages of Designing Accelerators


	3 Related Work
	3.1 Graph Computing Benchmark Suites
	3.2 Prior GNN Accelerators

	4 GNN Workload Characterization
	4.1 Motivation for Characterizing GNN Workloads
	4.2 Prior Work on GNN Characterization
	4.3 Input Graph Types
	4.4 Benchmark Suite Design
	4.5 Profiling Methodology
	4.5.1 Experimental Platform
	4.5.2 Profiling Tools
	4.5.3 Metrics of Interest
	4.5.4 Multi-GPU Implementations

	4.6 Benchmarking Results
	4.6.1 Execution Time Breakdown
	4.6.2 Instruction Mix and GFLOPS/GIOPS Analysis
	4.6.3 Stalls and Cache Analysis
	4.6.4 Sparsity during GNN training
	4.6.5 Scalability of GNN training using multi-GPU systems

	4.7 GNNMark Summary

	5 Algorithmic Strategies for GNN Acceleration
	5.1 Motivation for SpGEMM kernel acceleration
	5.2 Background on SpGEMM
	5.3 MAP - CSR Storage Format
	5.3.1 MAP-CSR Implementation
	5.3.2 MAP-CSR Advantages
	5.3.3 MAP-CSR Limitations

	5.4 SMASH Kernel
	5.4.1 Memory computation phase
	5.4.2 Product Computation Phase
	5.4.3 SMASH Version 1: Atomic Hashing
	5.4.4 SMASH Version 2: Tokenization
	5.4.5 SMASH Version 3: Pipelining

	5.5 SMASH Evaluation
	5.6 SMASH Summary

	6 Hardware Acceleration of GNNs
	6.1 Key Bottlenecks in Accelerating GNNs
	6.2 Fundamentals of GNN Workloads
	6.3 Architectural Implications of GNN Workloads
	6.4 Sparse Matrix Multiplication: Algorithmic Overview
	6.5 Mapping Algorithms: Design and Requirements
	6.6 NeuraChip Architecture
	6.6.1 Tiled Gustavson's Multiplication Algorithm
	6.6.2 On-chip Dataflow
	6.6.3 NeuraCore
	6.6.4 NeuraMem
	6.6.5 Dynamically Reseeding Hash-based Mapping

	6.7 Exploring the Design Space of NeuraChip
	6.8 NeuraChip Evaluation
	6.8.1 Experimental Setup
	6.8.2 Simulator Framework
	6.8.3 Comparative Analysis with Sparse Matrix Accelerators
	6.8.4 Comparative Analysis of GNN Accelerators
	6.8.5 Power Consumption and Area Analysis

	6.9 Comparison with Prior Custom Accelerators
	6.10 NeuraChip Summary

	7 Conclusion
	7.1 GNN Workload Characterization
	7.2 SMASH: GNN Algorithmic Acceleration
	7.3 NeuraChip: GNN Hardware Acceleration
	7.4 Contributions of this Dissertation
	7.5 Future Work

	Bibliography

