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What is Homomorphic Encryption?
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Problems with Homomorphic Encryption
4–6 orders of 

magnitude slower

Modular reduction

is extremely slow

Low arithmetic 

intensity

Larger bit-width 

integer operations

3



Key Contributions

Native modular reduction support

Locality Aware Block SchedulerWider multiply-accumulate units

Introduce a new CU-side interconnect

Mitigates redundant data transfers Modulus operation is used 

extensively in HE kernels

Native support for 64-bit integer 

arithmetic

Scaling out to multiple HE kernels
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AMD CDNA Architecture
Choice of hardware platform: MI100

▷ Capitalize on well-established GPU ecosystems

▷ In-house CDNA architecture simulator

NaviSim [1] (Open sourced)

Parameter Value

Max Frequency 1502 MHz

Peak Performance 23.07 TFLOPs

Register File Size 15 MB

CU Count 120

L1 Vector Cache 16 KB per CU

Local Data Share 7.5 MB

Peak Bandwidth 1229 GB/s

[1] Bao, Yuhui, et al. "Nav iSim: A Highly  Accurate GPU Simulator f or AMD RDNA GPUs." Proceedings of  the International Conf erence on Parallel Architectures and Compilation Techniques. PACT 2022. 5
Architecture of CDNA GPU



CKKS HE Kernels
Kernels Description Working dataset size

PolyAdd Add a plaintext to a ciphertext 14 MB

PolyMult Multiplying a plaintext with a ciphertext 14 MB

HEAdd Add two ciphertexts 28.3 MB

HEMult Multiply two ciphertexts 127.3 MB

HERotate Circular rotate elements by 𝑟 slots 127.3 MB

HERescale Restore the scale of a ciphertext 42.3 MB

All HE operations have 

Arithmetic Intensity < 1

MI100 GPU architectural parameters

▷ L1 Cache: 16 KB per CU

▷ Local Data Share: 7.5 MB

▷ Shared L2 Cache: 8 MB

𝐴𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝐷𝑎𝑡𝑎 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑟𝑒𝑑 (𝐵𝑦𝑡𝑒𝑠)
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Compute Unit-side Interconnect
cNoC

Existing GPU on-chip network

▷ Sharing data between CUs 
requires data to traverse the 
entire memory stack

CU-side network on chip

▷ Allows inter-CU communication

Existing GPU on-chip network CU-side network on chip 7



Enhancing the on-chip network

(a) Existing GPU on-chip network 
limits inter-CU communication

(b) Proposed 2D torus topology for enabling 
inter-CU communication
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Proposed Barrett’s 

Reduction Algorithm1

𝑐 = 𝑥 ≫ (𝑚 − 2)
𝑞𝑢𝑜𝑡 = 𝑐 × 𝜇 ≫ (𝑚+ 3)
𝑟𝑒𝑚 = 𝑥 − 𝑞𝑢𝑜𝑡 × 𝑞

if 𝑟𝑒𝑚 ≥ 𝑞 then

𝑟𝑒𝑚 = 𝑟𝑒𝑚 − 𝑞

return 𝑟𝑒𝑚

Hardware Support for Modular Reduction
MOD

• Each operation in HE is followed by a modulo
operation

• Modulo computation involves expensive division
operation

Architecture mod-red
(cycles)

mod-add
(cycles)

mod-mul
(cycles)

Vanilla MI100 46 62 63

GME - MOD 26 18 38

[1] Shiv dikar et al., 2022. Accelerating poly nomial multiplication f or homomorphic encry ption on GPUs. In 2022 IEEE International Sy mposium on Secure and Priv ate Execution Env ironment Design (SEED) 9

Precomputation

𝑚 = 𝑙𝑒𝑛 𝑞

𝜇 =
22𝑚+1

𝑞

Goal: 𝑟𝑒𝑚 = 𝑥 % 𝑞

𝑟𝑒𝑚

= 𝑥 −
𝑥

𝑞
× 𝑞

• Barrett's reduction replaces division with a set of 
bit-shift and multiplication operations



Experimental Platforms

Baseline

AMD CDNA MI100 GPU

GME

NaviSim: Cycle-level GPU 
simulator

Scaling Out

BlockSim: Extend 
NaviSim with multi-block 
support

NaviSim Sim
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Performance Evaluation

Speedup achieved from each microarchitectural extension.

Accelerator Arch. TA.S.

(ns)
Boot
(ms)

HE-LR
(ms)

ResNet-20
(ms)

Lattigo [1] CPU 8.8e4 3.9e4 23293 -

HyPHEN [2] CPU 2110 2.1e4 - 3.7e4

F1 [3] ASIC 2.6e5 Yes* 1024 -

BTS [4] ASIC 45 58.9 28.4 1910

CraterLake [5] ASIC 17 4.5 15.2 321

ARK [6] ASIC 4 3.7 7.42 125

FAB [7] FPGA 470 92.4 103 -

100x [8] V100 740 528 775 -

HyPHEN [2] V100 - 830 - 1400

T-FHE [9] A100 404 157 178 3793

Baseline MI100 863 413 658 9989

GME MI100+ 74.5 33.63 54.5 982[1] Vincent et al., Lattigo v4. 
[2] Park et al., HyPHEN: A Hybrid Packing Method and Optimizations for Homomorphic Encryption-Based Neural Network.

[3] Samardzic et al., F1: A fast and programmable accelerator for fully homomorphic encryption.

[4] Kim et al., BTS: An accelerator for bootstrappable fully homomorphic encryption
[5] Samardzic et al., Craterlake: a hardware accelerator for efficient unbounded computation on encrypted data. 

[6] Kim et al., ARK: Fully homomorphic encryption accelerator with runtime data generation and inter-operation key reuse.
[7] Agrawal et al., FAB: An FPGA-based accelerator for bootstrappable fully homomorphic encryption. HPCA 2023

[8] Jung et al., Over 100x faster bootstrapping in fully homomorphic encryption through memory-centric optimization with GPUs.

[9] Fan et al., Tensorfhe: Achieving practical computation on encrypted data using gpgpu.

Speedup over CPU: 796x GPU: 14.2x FPGA: 2.3x



cNoC

• Increases CU-Utilization

• Decreases DRAM traffic

MOD + WMAC

• MOD introduces 
complex instructions

• Increases avg. CPI

LABS

• Shared blocks are scheduled 
together reducing DRAM Traffic

• Avg. speedup of 1.5X

Impact of μ-arch extensions

ResNet-20 Workload
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On-chip Memory Size Exploration
2xLDS

▷ Increasing the LDS size from 7.5MB to 
15.5MB produces significant speedup

Workload Speedup

Bootstrapping 1.74x

HE – LR 1.53x

ResNet – 20 1.51x
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Evaluated µ-Arch Extensions

▷ cNoC: 2D Torus on-chip network
▷ MOD: Natively supported modular-

reduction
▷ WMAC: 64-bit integer pipeline
▷ LABS: Sharing data across blocks



Concluding Remarks

HE has emerged as the “holy grail” of data 
privacy against rapidly evolving threats in 

the quantum era

Presented four µ-Arch Extensions Future Work

GME speedup over

• CPU: 796x

• GPU: 14.2x

• FPGA: 2.3x

• Incorporate Processing-in-Memory 
techniques

• Integrate with open-source platforms

Identified key bottlenecks in HE

• Redundant data transfers

• Expensive modular reduction 
operations
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Any questions?

Thank you!
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