

GME

GPU-based **M**icroarchitectural **E**xtensions to Accelerate Homomorphic Encryption

Kaustubh Shivdikar¹, Yuhui Bao¹, Rashmi Agrawal², Michael Shen¹, Gilbert Jonatan³, Evelio Mora⁴, Alexander Ingare¹, Neal Livesay¹, José L. Abellán⁵, John Kim³, Ajay Joshi², David Kaeli¹

What is Homomorphic Encryption?

Problems with Homomorphic Encryption

Key Contributions

Native modular reduction support

 Modulus operation is used extensively in HE kernels

Wider multiply-accumulate units

Locality Aware Block Scheduler

Scaling out to multiple HE kernels

AMD CDNA Architecture

Choice of hardware platform: MI100

- Capitalize on well-established GPU ecosystems
- In-house CDNA architecture simulator NaviSim [1] (Open sourced)

Parameter	Value
Max Frequency	1502 MHz
Peak Performance	23.07 TFLOPs
Register File Size	15 MB
CU Count	120
L1 Vector Cache	16 KB per CU
Local Data Share	7.5 MB
Peak Bandwidth	1229 GB/s

Architecture of CDNA GPU

CKKS HE Kernels

Kernels	Description	Working dataset size
PolyAdd	Add a plaintext to a ciphertext	14 MB
PolyMult	Multiplying a plaintext with a ciphertext	14 MB
HEAdd	Add two ciphertexts	28.3 MB
HEMult	Multiply two ciphertexts	127.3 MB
HERotate	Circular rotate elements by r slots	127.3 MB
HERescale	Restore the scale of a ciphertext	42.3 MB

MI100 GPU architectural parameters

- ▷ L1 Cache: 16 KB per CU
- Local Data Share: 7.5 MB
- Shared L2 Cache: 8 MB

 $Arithmetic Intensity = \frac{Number of Integer Operations}{Amount of Data Transferred (Bytes)}$

All HE operations have Arithmetic Intensity < 1

Compute Unit-side Interconnect

Existing GPU on-chip network

Sharing data between CUs requires data to traverse the entire memory stack

CU-side network on chip

Allows inter-CU communication

Existing GPU on-chip network

Enhancing the on-chip network

(a) Existing GPU on-chip network limits inter-CU communication (b) Proposed 2D torus topology for enabling inter-CU communication

Hardware Support for Modular Reduction MOD

- Each operation in HE is followed by a modulo operation
- Modulo computation involves expensive division operation
- **Barrett's reduction** replaces division with a set of bit-shift and multiplication operations

Architecture	mod-red (cycles)	mod-add (cycles)	mod-mul (cycles)
Vanilla MI100	46	62	63
GME-MOD	26	18	38

$rem = x - \left(\left\lfloor \frac{x}{q} \right\rfloor \times q \right)$		
Precomputation	Proposed Barrett's Reduction Algorithm ¹	
$m = len(q)$ $\mu = \left\lfloor \frac{2^{2m+1}}{q} \right\rfloor$	$c = x \gg (m - 2)$ $quot = (c \times \mu) \gg (m + 3)$ $rem = x - quot \times q$ if $rem \ge q$ then	
	rem = rem - q return rem	

Goal: rem = x % q

Experimental Platforms

AMD CDNA MI100 GPU	NaviSim : Cycle-level GPU simulator	BlockSim: Extend NaviSim with multi-block support		
	NaviSim 🙀	Sim		
Baseline	GME	Scaling Out		

Performance Evaluation

Speedup achieved from each microarchitectural extension.

Accelerator	Arch.	T _{A.S.} (ns)	Boot (ms)	HE-LR (ms)	ResNet-20 (ms)
Lattigo [1]	CPU	8.8e4	3.9e4	23293	-
HyPHEN [2]	CPU	2110	2.1e4	-	3.7e4
F1 [3]	ASIC	2.6e5	Yes*	1024	-
BTS [4]	ASIC	45	58.9	28.4	1910
CraterLake [5]	ASIC	17	4.5	15.2	321
ARK [6]	ASIC	4	3.7	7.42	125
FAB [7]	FPGA	470	92.4	103	-
100x [8]	V100	740	528	775	-
HyPHEN [2]	V100	-	830	-	1400
T-FHE [9]	A100	404	157	178	3793
Baseline	MI100	863	413	658	9989
GME	MI100+	74.5	33.63	54.5	982

Speedup over CPU: 796x GPU: 14.2x FPGA: 2.3x

[1] Vincent et al., Lattigo v4.

[2] Park et al., HyPHEN: A Hybrid Packing Method and Optimizations for Homomorphic Encryption-Based Neural Network.
[3] Samardzic et al., F1: A fast and programmable accelerator for fully homomorphic encryption.
[4] Kim et al., BTS: An accelerator for bootstrappable fully homomorphic encryption
[5] Samardzic et al., Craterlake: a hardware accelerator for efficient unbounded computation on encrypted data.
[6] Kim et al., ARX: Fully homomorphic encryption accelerator for bootstrappable fully homomorphic encryption and inter-operation key reuse.
[7] Agrawal et al., FAB: An FPGA-based accelerator for bootstrappable fully homomorphic encryption. HPCA 2023
[8] Jung et al., Over 100x faster bootstrapping in fully homomorphic encryption through memory-centric optimization with GPUs.

[9] Fan et al., **Tensorfhe**: Achieving practical computation on encrypted data using gpgpu.

Impact of μ -arch extensions

cNoC

- Increases CU-Utilization
- Decreases DRAM traffic

MOD + WMAC

- MOD introduces
 complex instructions
- Increases avg. CPI

LABS

- Shared blocks are scheduled together reducing DRAM Traffic
- Avg. speedup of 1.5X

On-chip Memory Size Exploration **2xLDS**

Increasing the LDS size from 7.5MB to
 15.5MB produces significant speedup

Workload	Speedup
Bootstrapping	1.74x
HE – LR	1.53x
ResNet-20	1.51x

Evaluated μ -Arch Extensions

- cNoC: 2D Torus on-chip network
- MOD: Natively supported modularreduction
- ▷ WMAC: 64-bit integer pipeline
- ▷ LABS: Sharing data across blocks

Concluding Remarks

HE has emerged as the "holy grail" of data privacy against rapidly evolving threats in the quantum era

Identified key bottlenecks in HE

- Redundant data transfers
- Expensive modular reduction operations

** ** ** **

0

Presented four **µ**-Arch Extensions

GME speedup over

- GPU: **14.2**x
- FPGA: 2.3x

Future Work

- Incorporate Processing-in-Memory techniques
- Integrate with open-source platforms

Thank you!

Any questions?

Paper and Slides: wiki.kaustubh.us

Support by:

- NSF IUCRC Center for Hardware and Embedded Systems Security and Trust (CHEST) NSF CNS Award #2312275
- NSF CNS Award #2312276
- Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd
- Grant RYC2021-031966-I funded by MCIN/AEI/10.13039/501100011033
- "European Union NextGenerationEU/PRTR."