
GME: GPU-based Microarchitectural Extensions to Accelerate
Homomorphic Encryption

Kaustubh Shivdikar1 Yuhui Bao1 Rashmi Agrawal2 Michael Shen1 Gilbert Jonatan3 Evelio Mora4
Alexander Ingare1 Neal Livesay1 José L. Abellán5 John Kim3 Ajay Joshi2 David Kaeli1

1Northeastern University 2Boston University 3KAIST 4UCAM 5Universidad de Murcia
{shivdikar.k, bao.yu, shen.mich, ingare.a, n.livesay, d.kaeli}@northeastern.edu

{rashmi23, joshi}@bu.edu, eamora@ucam.edu, jlabellan@um.es, {gilbertjonatan, jjk12}@kaist.ac.kr

ABSTRACT
Fully Homomorphic Encryption (FHE) enables the processing of
encrypted data without decrypting it. FHE has garnered significant
attention over the past decade as it supports secure outsourcing
of data processing to remote cloud services. Despite its promise
of strong data privacy and security guarantees, FHE introduces a
slowdown of up to five orders of magnitude as compared to the
same computation using plaintext data. This overhead is presently
a major barrier to the commercial adoption of FHE.

In this work, we leverage GPUs to accelerate FHE, capitalizing
on a well-established GPU ecosystem available in the cloud. We
propose GME, which combines three key microarchitectural ex-
tensions along with a compile-time optimization to the current
AMD CDNA GPU architecture. First, GME integrates a lightweight
on-chip compute unit (CU)-side hierarchical interconnect to retain
ciphertext in cache across FHE kernels, thus eliminating redundant
memory transactions. Second, to tackle compute bottlenecks, GME
introduces special MOD-units that provide native custom hardware
support for modular reduction operations, one of the most com-
monly executed sets of operations in FHE. Third, by integrating
the MOD-unit with our novel pipelined 64-bit integer arithmetic
cores (WMAC-units), GME further accelerates FHE workloads by
19%. Finally, we propose a Locality-Aware Block Scheduler (LABS)
that exploits the temporal locality available in FHE primitive blocks.
Incorporating these microarchitectural features and compiler op-
timizations, we create a synergistic approach achieving average
speedups of 796×, 14.2×, and 2.3× over Intel Xeon CPU, NVIDIA
V100 GPU, and Xilinx FPGA implementations, respectively.

CCS CONCEPTS
• Computer systems organization→ Interconnection archi-
tectures; Very long instruction word; Single instruction, multi-
ple data; • Security and privacy → Cryptography; • Networks
→ Network on chip; • Theory of computation → Cryptographic
primitives.

This work is licensed under a
Creative Commons Attribution 4.0 International License.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0329-4/23/10.
https://doi.org/10.1145/3613424.3614279

KEYWORDS
Zero-trust frameworks, Fully Homomorphic Encryption (FHE),
Custom accelerators, CU-side interconnects, Modular reduction
ACM Reference Format:
Shivdikar et al. 2023. GME: GPU-based Microarchitectural Extensions to
Accelerate Homomorphic Encryption. In 56th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO ’23), October 28-November
1, 2023, Toronto, ON, Canada. ACM, New York, NY, USA, 15 pages. https:
//doi.org/10.1145/3613424.3614279

1 INTRODUCTION

Safe
Environment

Hostile
Environment

Untrusted
Environment

Internet

Trust Barrier

Message Encrypt Cipher-text

Message Decrypt Cipher-text

Cipher-text

Cipher-text

Se
rv
er
s

GME
GPUs

Figure 1: FHE offers a safeguard against online eavesdrop-
pers as well as untrusted cloud services by allowing direct
computation on encrypted data.

Large-scale machine learning (ML) models, such as OpenAI’s
GPT series and DALL-E, Google AI’s BERT and T5, and Facebook’s
RoBERTA, have made significant advances in recent years. Unfor-
tunately, providing public access for inference on these large-scale
models leaves them susceptible to zero-day exploits [38, 71]. These
exploits expose the user data as well as the ML models to hack-
ers for potential reverse engineering [38], a concerning prospect
as these models are highly valued assets for their respective com-
panies. For example, a recent security vulnerability in the Redis
client library resulted in a data breach on ChatGPT [60], which is
currently regarded as one of the leading machine learning research
platforms.

In the past decade, Fully Homomorphic Encryption (FHE) has
emerged as the “holy grail” of data privacy. Using FHE, one can
perform operations on encrypted data without decrypting it first
(see Figure 1). FHE adopters can offload their encrypted private data
to third-party cloud service providers while preserving end-to-end
privacy. Specifically, the secret key used for encryption by users

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3613424.3614279
https://doi.org/10.1145/3613424.3614279
https://doi.org/10.1145/3613424.3614279

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Shivdikar et al.

is never disclosed to the cloud providers, thus facilitating privacy-
preserving ML training and inference in an untrusted cloud setting
(whether self-hosted or utilizing public cloud services) [77, 83, 87].

During its early stages, homomorphic encryption was limited by
the number and types of computations, rendering it viable solely
for shallow circuits [30]. In these circuits, the error would propa-
gate and increase with each addition or multiplication operation,
ultimately leading to decryption errors. Following Gentry’s ground-
breaking work [30], this important limitation was resolved by using
bootstrapping [19], resulting in FHE computations that permit an
unlimited number of operations. Although FHE offers significant
benefits in terms of privacy preservation, it faces the challenge of
being extremely slow (especially the bootstrapping operation), with
performance up to five orders of magnitude slower than plaintext
computing [42].

Prior studies have tried to accelerate FHE kernels by developing
CPU extensions [15, 31, 42, 55], GPU libraries [4, 54, 61, 76], FPGA
implementations [1, 66, 88], and custom accelerators [33, 45, 67].
CPU-based solutions inherently face limitations due to their lim-
ited compute throughput [17], while FPGA-based solutions are
constrained by their limited operating frequency and resources
available on the FPGA board. ASIC-based solutions provide the
most acceleration [29], but they cannot be easily adapted to fu-
ture algorithmic changes and can be fairly expensive to use in
practice. Additionally, as the number of diverse domain-specific
custom accelerators grows rapidly, it becomes increasingly difficult
to create high-quality software libraries, compilers, drivers, and
simulation tools for each accelerator in a timely manner, posing
a challenge in terms of time-to-market. Therefore, while previous
work has accelerated FHE workloads, they often fall short in terms
of cost-effectiveness or lack the necessary infrastructure to support
large-scale deployment.

Rather than developing domain-specific custom accelerators, our
work focuses on enhancing the microarchitecture of GPUs that are
currently deployed in the cloud and can be easily upgraded. This
leads to a practical solution as we can readily exploit the cloud
ecosystem that is built around GPUs. On the upside, GPUs offer a
large number of vector processing units, so they are a good match
to capitalize on the inherent parallelism associated with FHE work-
loads. However, FHE ciphertexts are large (dozens of MB), require a
massive number of integer arithmetic operations, and exhibit vary-
ing stride memory access patterns. This imposes a true challenge
for existing GPU architectures since GPUs have been historically
designed to excel at executing thousands of threads in parallel (e.g.,
batched machine-learning workloads) featuring uniform memory
access patterns and rich floating-point computations.

To bridge the wide performance gap between operating on en-
crypted data using FHE and operating on plaintext data in GPUs,
we propose several microarchitectural features to extend the latest
AMD CDNA GPU architecture. Specifically, our efforts are focused
on improving the performance of the Residue Number System (RNS)
version of the CKKS FHE scheme, as it naturally supports numerous
privacy-preserving applications. Similar to results found in earlier
studies [24], our benchmarking of CKKS FHE kernels indicates
they are significantly bottlenecked by the limited main memory
bandwidth. This is because current GPUs suffer from excessive
redundant memory accesses when executing FHE-based workloads.

Compute Unit
Program Counter

Ve
ct

or
 A

LU

MOD

WMAC

Scalar ALU

Compute Unit
Program Counter

Ve
ct

or
 A

LU

MOD

WMAC

Scalar ALU

Local Data Share

C
U

-s
id

e
In

te
rc

on
ne

ct

Local Data Share

L1 Cache L1 Cache

Mem-side Interconnect

L2 Cache L2 Cache L2 Cache L2 Cache

Memory Controller

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

Sh
ad

er
 A

rra
y

Proposed
Features

Lo
ca

lit
y-

Aw
ar

e
Bl

oc
k

Sc
he

du
le

r
C

om
m

an
d

Q
ue

ue

Ultra-Threaded Dispatch Processor

...

H
BM

MOD WMACCU-side
Interconnect

LABS

Figure 2: The four key contributions of our work (indicated
in green) evaluated within the context of an AMD CDNA
GPU architecture.

Present GPUs are ill-equipped to deal with varying stride FHE
memory access patterns. According to our experiments, this can
lead to a very high degree of compute unit stalls and is a primary
cause of the huge performance slowdown in FHE computations on
GPU-based systems.

To address these challenges, we propose GME, a hardware-
software co-design specifically tailored to provide efficient FHE
execution on the AMD CDNA GPU architecture (illustrated in Fig-
ure 2). First, we present CU-side interconnects that allow ciphertext
to be retained within the on-chip caches, thus eliminating redun-
dant memory transactions in the FHE kernels. Next, we optimize the
most commonly executed operations present in FHE workloads (i.e.,
the modular reduction operations) and propose novel MOD-units.
To complement our MOD-units, we introduce WMAC-units that na-
tively perform 64-bit integer operations, preventing the throttling
of the existing 32-bit arithmetic GPU pipelines. Finally, in order
to fully benefit from the optimizations applied to FHE kernels, we
develop a Locality-Aware Block Scheduler (LABS) that enhances
the temporal locality of data. LABS is able to retain on-chip cache
data across FHE blocks, utilizing block computation graphs for
assistance.

To faithfully implement and evaluate GME, we employ Nav-
iSim [11], a cycle-accurate GPU architecture simulator that accu-
rately models the CDNA ISA [6]. To further extend our research
to capture inter-kernel optimizations, we extend the implementa-
tion of NaviSim with a block-level directed acyclic compute graph

GME: GPU-based Microarchitectural Extensions to Accelerate Homomorphic Encryption MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

simulator called BlockSim. In addition, we conduct ablation studies
on our microarchitectural feature implementations, enabling us to
isolate each microarchitectural component and evaluate its distinct
influence on the entire FHE workload.

Our contributions include:
(1) Simulator Infrastructure: We introduce BlockSim, which, to

the best of our knowledge, is among the first efforts to de-
velop a simulator extension for investigating FHE microar-
chitecture on GPUs.

(2) CU-side interconnect (cNoC):We propose an on-chip network
that interconnects on-chip memory, enabling the exploita-
tion of the large on-chip memory capacity and support for
the all-to-all communication pattern commonly found in
FHE workloads.

(3) GPU Microarchitecture: We propose microarchitectural en-
hancements for GPUs, including ISA extensions, modular
reduction operationmicroarchitecture, and awide arithmetic
pipeline to deliver high throughput for FHE workloads.

(4) Locality-Aware Block Scheduler : Utilizing the CU-side inter-
connect (cNoC), we propose a graph-based block scheduler
designed to improve the temporal locality of data shared
across FHE primitives.

Our proposed improvements result in an average speedup of
14.6× over the prior state-of-the-art GPU implementation [41] for
HE-LR and ResNet-20 FHE workloads. Our optimizations collec-
tively reduce redundant computation by 38%, decreasing the mem-
ory pressure on DRAM. Although the proposed optimizations can
be adapted for other architectures (with minor modifications), our
work primarily concentrates on AMD’s CDNA microarchitecture
MI100 GPU.

2 BACKGROUND
In this section, we briefly describe the AMD CDNA architecture
and background of the CKKS FHE scheme.

2.1 AMD CDNA Architecture
Tomeet the growing computation requirements of high-performance
computing (HPC) and machine learning (ML) workloads, AMD in-
troduced a new family of CDNA GPU architectures [8] that are
used in AMD’s Instinct line of accelerators. The CDNA architecture
(see Figure 3) adopts a highly modular design that incorporates
a Command Processor (CP), Shader Engines (including Compute
Units and L1 caches), an interconnect connecting the core-side L1
caches to the memory-side L2 caches and DRAM. The CP receives
requests from the driver on the CPU, including memory copying
and kernel launch requests. The CP sends memory copying requests
to the Direct Memory Access (DMA), which handles the transfer of
data between the GPU and system memory. The CP is also respon-
sible for breaking kernels down into work-groups and wavefronts,
sending these compute tasks to Asynchronous Compute Engines
(ACE), which manage the dispatch of work-groups and wavefronts
on the Compute Units (CUs).

The CDNA architecture employs the CU design from the earlier
GCN architecture but enhances it with new Matrix Core Engines.
A CU (see Figure 3) is responsible for instruction execution and
data processing. Each CU is composed of a scheduler that can fetch

... ...L2 Cache

DRAM

(a) The Architecture of CDNA GPUs.

Command Processor

InterconnectInterconnect

L2 Cache

DRAM

L2 Cache

DRAM

L2 Cache

DRAM

L2 Cache

DRAM

L1I L1VL1S

Operand Gathering

(b) The Architecture of a CDNA Compute Unit.

In
st

 F
et

ch

10 Wave
Inst Buf

10 Wave
Inst Buf

10 Wave
Inst Buf

10 Wave
Inst Buf

De
co

de
 &

 Is
su

e

Vec.
Mem

Register
Write Back

To Other CUs

Dedicated
Link to

L1V Cache

VReg SReg SALU
LDS
Unit

SMID
-16

Matrix
Unit Matrix

Unit Matrix
Unit Matrix

Unit
SMID
-16

SMID
-16

SMID
-16

Instruction Cache

Scalar Cache

Shader Engine

Compute Unit

L1V Compute Unit

Compute UnitL1V

L1V

L1S

L1I

...

Instruction Cache

Scalar Cache

Shader Engine

Compute Unit

L1VCompute Unit

Compute Unit L1V

L1V

L1S

L1I

...

Figure 3: Architecture diagram showing the limitations of
AMD GPU memory hierarchy. Each compute unit has a dedi-
cated L1V cache and an LDS unit that cannot be shared with
neighboring compute units.

and issue instructions for up to 40 wavefronts. Different types of in-
structions are issued to different execution units, including a branch
unit, scalar processing units, and vector processing units. The scalar
processing units are responsible for executing instructions that ma-
nipulate data shared by work-items in a wavefront. The vector pro-
cessing units include a vector memory unit, four Single-Instruction
Multiple-Data (SIMD) units, and a matrix core engine. Each SIMD
unit is equipped with 16 single-precision Arithmetic Logic Units
(ALUs), which are optimized for FP32 operations. The matrix core
engine handles multiply-accumulate operations, supporting vari-
ous datatypes (like 8-bit integers (INT8), 16-bit half-precision FP
(FP16), 16-bit Brain FP (bf16), and 32-bit single-precision FP32). We
cannot leverage these engines for FHE, as they work with INT8
operands that are not well-suited for FHE computations [78] (FHE
workloads benefit from INT64 arithmetic pipelines). Each CU has
a 64 KB memory space called the Local Data Share (LDS), which
enables low-latency communication between work-items within a
work-group. LDS is analogous to shared memory in CUDA. This
memory is configured with 32 banks to achieve low latency and
high bandwidth access. LDS facilitates effective data sharing among
work-items and acts as a software cache to minimize global memory

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Shivdikar et al.

accesses. However, a significant limitation of LDS is that CUs can
only access its local LDS, and directly accessing remote LDS is not
possible.

The CDNA architecture has a two-level cache hierarchy. Each CU
has a dedicated L1 vector cache. CUs in a Shader Engine (typically
15 CUs) share an L1 scalar cache and an L1 instruction cache. The
second level of cache is composed of memory-side L2 caches. Each
L2 cache interfaces to a DRAM controller (typically implemented
in HBM or GDDR technology). The L2 caches and the DRAM con-
trollers are banked, allowing them to service a part of the address
space.

2.2 CKKS FHE Scheme
In this paper, we focus on the CKKS FHE scheme, as it can support
a wide range of privacy-preserving applications by allowing op-
erations on floating-point data. We list the parameters that define
the CKKS FHE scheme in Table 1 and the corresponding values
of key parameters in Table 3. The main parameters —i.e., 𝑁 and
𝑄— define the size of the ciphertext and also govern the size of
the working data set that is required to be present in the on-chip
memory. The ciphertext consists of a pair of elements in the poly-
nomial ring 𝑅𝑄 = Z𝑄 [𝑥]/(𝑥𝑁 + 1). Each element of this ring is
a polynomial

∑𝑁−1
𝑖=0 𝑎𝑖𝑥

𝑖 with “degree-bound” 𝑁 − 1 and coeffi-
cients 𝑎𝑖 in Z𝑄 . For a message m ∈ C𝑛 , we denote its encryption as
JmK = (Am,Bm) where Am and Bm are the two polynomials that
comprise the ciphertext.

For 128-bit security, typical values of 𝑁 range from 216 to 217
and log𝑄 values range from 1700 to 2200 bits for practical pur-
poses. These large sizes of 𝑁 and log𝑄 are required to maintain
the security of the underlying Ring-Learning with Errors assump-
tion [57]. However, there are no commercially available compute
systems that have hundred-bit wide or thousand-bit wide ALUs,
which are necessary to process these large coefficients. A common
approach for implementing the CKKS scheme on hardware with a
much smaller word length is to choose𝑄 to be a product of distinct
word-sized primes 𝑞1, . . . , 𝑞ℓ . Then Z𝑄 can be identified with the
“product ring”

∏𝑙
𝑖=1 Z𝑞𝑖 via the Chinese Remainder Theorem [79].

In practice, this means that the elements of Z𝑄 can be represented
as an ℓ-tuple (𝑥1, . . . , 𝑥ℓ) where 𝑥𝑖 ∈ Z𝑞𝑖 for each 𝑖 . This representa-
tion of elements in Z𝑄 is referred to as the Residue Number System
(RNS) and is commonly referred to as the limbs of the ciphertext.

In this work, as shown in Table 3, we choose 𝑁 = 216 and
log𝑄 = 1728, meaning that our ciphertext size will be 28.3 MB,
where each polynomial in the ciphertext is ∼14 MB. After RNS
decomposition on these polynomials using a word length of 54 bits,
we get 32 limbs in each polynomial, where each limb is ∼ 0.44 MB
large. The last level cache and the LDS in the AMD MI100 are 8MB
and 7.5 MB, respectively. Thus we cannot accommodate even a
single ciphertext in the on-chip memory. At most, we can fit ∼18
limbs of a ciphertext polynomial, and as a result, we will have to
perform frequent accesses to the main memory to operate on a
single ciphertext. In addition, the large value of 𝑁 implies that we
need to operate on 216 coefficients for any given homomorphic op-
eration. The AMD MI100 GPU includes 120 CUs with 4 SIMD units
each. Each SIMD unit can execute 16 threads in parallel. Therefore,
a total of 7680 operations (scalar additions/multiplications) can be

Table 1: CKKS Parameters and descriptions

Param Description
𝑁 Polynomial degree-bound
𝑛 Length of the message. 𝑛 ≤ 𝑁

2
𝑄 Polynomial modulus
𝐿 Maximum number of limbs in a ciphertext
C The set {𝑞0, 𝑞1, . . . , 𝑞𝐿} of prime factors of 𝑄
ℓ Number of limbs, number of factors in 𝑄 ;

dnum Number of digits in the switching key
𝛼 Number of limbs that comprise a single digit

in the key-switching decomposition 𝛼 = ⌈ 𝐿+1
dnum ⌉

𝑃 Product of extension limbs added for
raised modulus. Total extension limbs = 𝛼 + 1

fftIter Multiplicative depth of bootstrapping
linear transform

Δ Scale multiplied during encryption
m A message vector of 𝑛 slots

JmK Ciphertext encrypting a message
Am A randomly sampled polynomial from message m
𝑃 Encrypted message as a polynomial
𝑃𝑚 Polynomial encrypting message𝑚
[𝑃]𝑞𝑖 𝑞𝑖 -limb of 𝑃
evk Evaluation key

evk(𝑟)𝑟𝑜𝑡 Evaluation key for HE-Rotate block with
(𝑟) rotations

performed in parallel. However, we need to schedule the operations
on 216 coefficients in over eight batches (216 / 7680), adding to the
complexity of scheduling operations.

We list all the building blocks in the CKKS scheme in Table 2. All
of the operations that form the building blocks of the CKKS scheme
reduce to 64 bit-wide scalar modular additions and scalar modular
multiplications. The commercially available GPU architectures do
not implement these wide modular arithmetic operations directly,
but can emulate them via multiple arithmetic instructions, which
significantly increases the amount of compute required for these
operations. Therefore, providing native modular arithmetic units is
critical to accelerating FHE computation. To perform modular ad-
dition over operands that are already reduced, we use the standard
approach of conditional subtraction if the addition overflows the
modulus. For generic modular multiplications, we use the modified
Barrett reduction technique [76].

The ScalarAdd and ScalarMult are the two most basic building
blocks that add and multiply a scalar constant to a ciphertext.
PolyAdd and PolyMult add and multiply a plaintext polynomial
to a ciphertext. We define separate ScalarAdd and ScalarMult op-
erations (in addition to PolyAdd and PolyMult) because the scalar
constant values can be fetched directly from the register file that can
help save expensive main memory accesses. Note that the PolyMult
is followed by an HERescale operation to restore the scale of a
ciphertext to Δ from scale Δ2. The CKKS supports floating-point
messages, so all encoded messages must include a scaling factor Δ.
This scaling factor is typically the size of one of the limbs of the
ciphertext. When multiplying messages together, this scaling factor
grows as well. The scaling factor must be shrunk down in order to
avoid overflowing the ciphertext coefficient modulus.

GME: GPU-based Microarchitectural Extensions to Accelerate Homomorphic Encryption MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

Table 2: HE building blocks using CKKS

Block Computation Description

ScalarAdd(JmK, 𝑐) Jm + cK = (Bm + c, Am) Add a scalar 𝑐 to a ciphertext where,
c is a length-𝑁 vector with every element 𝑐

ScalarMult(JmK, 𝑐) Jm · cK = (Bm · c, Am · c) Multiply a scalar by a ciphertext

PolyAdd(JmK, Pm′) Jm +m′K = (Bm + Pm′ , Am) Add an unencrypted polynomial
to a ciphertext

PolyMult(JmK, Pm′) Jm ·m′K = (Bm ∗ Pm′ , Am ∗ Pm′) Multiplying an unencrypted polynomial
with a ciphertext

HEAdd(JmK, Jm′K) Jm +m′K = (Bm + Bm′ , Am + Am′) Add two ciphertexts
HEMult(JmK, Jm′K, evkmult) Jm ·m′K = KeySwitch(Am ∗ Am′ , evkmult)+ Multiply two ciphertexts

(Bm ∗ Bm′ , Am ∗ Bm′ + Am′ ∗ Bm)
HERotate(JmK, 𝑟 , evk(r)rot) Jm ≪ 𝑟K = KeySwitch(𝜓𝑟 (Am), evk(r)rot)+ Circular rotate elements left by 𝑟 slots

(𝜓𝑟 (Bm), 0) 𝜓𝑟 is an automorphism performed
HERescale(JmK) JΔ−1 ·mK = (Δ−1Bm,Δ−1Am) Restore the scale of a ciphertext

from scale Δ2 back to Δ

In order to enable fast polynomial multiplication, by default, we
represent polynomials as a series of 𝑁 evaluations at fixed roots of
unity. This allows polynomial multiplication to occur in𝑂 (𝑁) time
instead of 𝑂 (𝑁 2) time. We refer to this polynomial representation
as the evaluation representation. There are certain sub-operations
within the building blocks, defined in Table 2, that operate over
the polynomial’s coefficient representation, which is simply a vector
of its coefficients. Moving between the two polynomial represen-
tations requires a number-theoretic transform (NTT) or inverse
NTT, which is the finite field version of the fast Fourier transform
(FFT). We incorporate a merged-NTT algorithmic optimization [65],
improving spatial locality for twiddle factors as they are read se-
quentially.

The HEAdd operation is straightforward and adds the corre-
sponding polynomials within the two ciphertexts. However, the
HEMult and HERotate operations are computationally expensive
as they perform a KeySwitch operation after the multiplication
and automorph operations, respectively. In both the HEMult and
HERotate implementations, there is an intermediate ciphertext with
a decryption key that differs from the decryption key of the input
ciphertexts. In order to change this new decryption key back to the
original decryption key, we perform a key switch operation. This
operation takes in a switching key (either evkmult or evk

(r)
rot) and a

ciphertext JmK𝑠 that is decryptable under a secret key 𝑠 . The output
of the key switch operation is a ciphertext JmK𝑠′ that encrypts the
same message but is decryptable under a different key 𝑠′.

To incur minimal noise growth during the key switch operation,
the key switch operation requires that we split the polynomial
into dnum digits, then raise the modulus before multiplying with
the switching key followed by a modulus down operation. The
modulus raise and down operations operate on the coefficient rep-
resentation of the polynomial, requiring us to perform expensive
NTT and iNTT conversions. Moreover, the switching keys are the
same size as the ciphertext itself, requiring us to fetch ∼112 MB of

Table 3: Practical parameters for our FHE operations.

log(𝑞) 𝑁 log𝑄 𝐿 𝐿𝑏𝑜𝑜𝑡 dnum fftIter 𝜆

54 216 1728 23 17 3 4 128

data to multiply the switching keys with the ciphertext. Thus, the
key switching operation not only adds to the bulk of the compute
through hundreds of NTT and iNTT operations, but also leads to
memory bandwidth bottlenecks. Finally, there exists an operation
known as bootstrapping [30] that needs to be performed frequently
to de-noise the ciphertext. This bootstrapping operation is a se-
quence of the basic building blocks in the CKKS scheme, meaning
that it suffers from the same compute and memory bottlenecks that
exist in these building blocks, making it one of the most expensive
operations.

3 GME ARCHITECTURE
The current issue with GPUs while implementing FHE workloads
is the significant disproportion in the usage of various hardware
resources present on the GPUs. As a result, specific resources such
as CUs experience underutilization, while others, like HBM and
on-chip caches, pose as significant bottlenecks. In this paper, we
propose to re-architect the current GPU microarchitecture and also
introduce novel microarchitectural extensions that enable optimal
utilization of GPU resources so as to maximize the performance
of the FHE workloads running on the GPU. We propose GME, a
robust set of microarchitectural features targeting AMD’s CDNA
architecture, unlocking the full potential of the GPU to accelerate
FHE workloads over 14.2× as compared to the previous comparable
accelerators [41].

In our work, we pinpoint critical bottlenecks encountered during
FHE workload execution and address them progressively using four
microarchitectural feature extensions. Our on-chip CU-side hier-
archical network (cNoC) and the Locality Aware Block Scheduler

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Shivdikar et al.

Memory
Bank

L2 Cache

DRAM

Interconnect

V-ALU
L1

C
ac

he

Memory
Bank

L2 Cache

DRAM

L1
C

ac
he

LD
S

Memory
Bank

L2 Cache

DRAM

Interconnect

L1
C

ac
he

Memory
Bank

L2 Cache

DRAM

LD
S

L1
C

ac
he

LD
S

LD
S

R R

(a) Traditional Mem-hierarchy
data sharing requires memory

transactions to traverse the entire stack

(b) On-chip routers allow data sharing
bypassing the off-chip interconnect

V-ALU V-ALU V-ALU

Figure 4: Inter-CU communication: Traditional vs proposed
communication with on-chip network

(LABS) contribute to minimizing the DRAM bandwidth bottleneck.
Simultaneously, our implementation of native modular reduction
(MOD) and wider multiply-accumulate units (WMAC) features
improve the math pipeline throughput, ensuring a streamlined
data flow with evenly distributed resource utilization. The list and
impact of our contributions can be visualized in Figure 2.

3.1 cNoC: CU-side interconnect
Modern GPUs have a network-on-chip that interconnects the cores
(in the case of AMD GPUs, compute units) together with the mem-
ory partitions or memory banks. In this work, we propose a new
type of on-chip interconnect that we refer to as a CU-side network-
on-chip (cNoC) that interconnects the CUs together – in particular,
all the CU’s LDS are interconnected together with (cNoC) to en-
able a “global” LDS that can be shared between the CUs. By ex-
ploiting the (cNoC), the dedicated on-chip memory can be shared
between cores, thus minimizing main memory accesses. Within
our research, we specifically adapted the (cNoC) to serve our FHE
workload. By leveraging the "global" LDS facilitated by the (cNoC),
FHE ciphertexts that reside in the LDS can be effortlessly shared
among neighboring compute units. This not only streamlines oper-
ations but, more crucially, eliminates the need to store data in the
main memory and subsequently reload it for sharing across cores.
This approach significantly reduces latency, as direct core-to-core
sharing via the (cNoC) bypasses the often time-consuming main
memory accesses.

We also provide synchronization barriers of varying granularity
to mitigate race conditions. Since the LDS is user-controlled, our

Shader Engine

... ...

Shader Engine

Shader Engine Shader Engine

Shader Engine Shader Engine

C
ro

ss
ba

r

Compute
Unit

On-chip
Router

Shader
Engine

2D Torus
TopologyLEGEND MUX Crossbar

Shader EngineShader Engine

HBM

...

...

... ...

(a) Existing MI100 communication network
that limits inter-CU communication

(b) Proposed concentrated 2D torus topology
for enabling inter-CU communication

Figure 5: Proposed hierarchical on-chip network featuring a
concentrated 2D torus topology

approach does not incur the overhead associated with cache co-
herence and avoids redundant cache invalidations, but comes with
some extra programmer effort. By implementing a global address
space (GAS) in our GPU, we establish data sharing and form a uni-
fied GAS by combining all LDSs. The virtual address space is then
mapped onto this unified GAS, with translation using a hash of the
lower address bits.

Current GPUs are designed hierarchically – e.g., MI100 GPU
comprises numerous compute units, with 8 of them combined to
form a Shader Engine (seen in Figure 5). The proposed (cNoC)
takes advantage of this hierarchy, utilizing a hierarchical on-chip
network (illustrated in Figure 5) that features a single router for
each Shader Engine, connecting the eight compute units that make
up a Shader Engine. The MI100 GPU houses 15 Shader Engines,
resulting in a total of 120 compute units. The routers are arranged
in a 3 × 5 2D grid and interconnected through a torus topology.
While this concentrated-torus topology [10, 39] can increase network
complexity, it reduces the number of required routers (from 120
to 15), thereby minimizing the chip area needed for the network.
In a concentrated-torus topology, all routers have the same degree
(number of ports), creating an edge-symmetric topology that is well-
suited for the all-to-all communication patterns of FHE workloads.

Figure 4(a) illustrates the conventional approach of data shar-
ing, where memory transactions must traverse through the full
memory hierarchy to share data between neighboring LDS. In con-
trast, our proposed CU-side interconnect, presented in Figure 4(b),
incorporates on-chip routers that circumvent off-chip intercon-
nects, improving data reuse. This results in a decrease of redundant
memory operations by 38%, effectively supporting the all-to-all
communication pattern commonly seen in FHE workloads.

3.2 Enhancing the Vector ALU
Native modular reduction extension: (MOD) The existing GPU
arithmetic pipeline is highly optimized for data manipulation op-
erations like multiply, add, bit-shift, and compare. A wavefront
executing any of these instructions takes 4 clock cycles in a lock-
step manner in the SIMD units. In a single wavefront consisting
of 64 threads, 16 threads are executed concurrently on the SIMD
units during each clock cycle. Conversely, operations like divide

GME: GPU-based Microarchitectural Extensions to Accelerate Homomorphic Encryption MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

Table 4: Cycle counts for 64-bit modulus instructions com-
paring MOD and WMAC features

𝜇-arch. mod-red mod-add mod-mul
Feature (cycles)∗ (cycles)∗ (cycles)∗

Vanilla MI100† 46 62 63
MODΔ 26 18 38
MOD+WMAC 17 7 23

† Refers to the unmodified CDNA architecture of MI100 GPUs.
∗Cycle count is averaged over 10,000 modulus instructions computed on cached data (using LDS
cache) and rounded to the nearest integer.
ΔModular operation is computed with various compile-time prime constants as modulus
incorporating compiler optimizations into the performance.

and modulus are emulated using a series of native instructions,
resulting in considerably slower performance compared to their
native counterparts.

As stated in Section 2.2, the modular reduction operation, used
for determining the remainder of a division, is performed after each
addition and multiplication. As a result, optimizing modular reduc-
tion is crucial for speeding up FHEworkloads. At present, theMI100
GPU executes a modular operation through a sequence of addition,
multiplication, bit shift, and conditional operations, drawing on
the conventional Barrett’s reduction algorithm [48]. This operation
currently takes a considerable amount of time, with the mod-red
operation requiring an average of 46 cycles for execution on the
MI100 GPU. In our study, we suggest enhancing the Vector ALU
pipeline within the CDNA architecture to natively support modu-
lar reduction, which brings it down to an average of 17 cycles for
each mod-red instruction. We augment the CDNA instruction set
architecture (ISA) with a collection of vector instructions designed
to perform modular reduction operations natively after addition
or multiplication operations. The new native modular instructions
proposed include:

• Native modular reduction:
mod-red <v0,s0> | V0 = V0 mod 𝑠0

• Native modular addition:
mod-add <v0,v1,s0> | V0 = (V0 + V1) mod 𝑠0

• Native modular multiplication:
mod-mult <v0,v1,s0> | V0 = (V0 × V1) mod 𝑠0

Modular reduction involves several comparison operations, re-
sulting in branch divergence in GPUs. Our implementation is de-
rived from an improved Barrett’s reduction algorithm [76]. This
approach minimizes the number of comparison operations to one
per modular reduction operation, significantly reducing the number
of branch instructions and enhancing compute utilization.

Wider multiply-accumulate units (WMAC): In the CKKS
FHE scheme, we can choose to perform operations on 32, 64, or 128-
bit wide RNS limbs for a ciphertext. This limb bit width governs
the operand size for the vector ALUs, impacting the number of
modular addition and multiplication operations required. Moreover,
there is an algorithmic-level performance versus precision trade-
off to consider when deciding on the bit width. If we opt for 32-
bit wide RNS limbs, we will have numerous limbs to work with,
increasing the available levels [2] while simultaneously reducing
the achievable precision for an application. Conversely, if we select
128-bit RNS limbs, we will have fewer limbs to work with, resulting

in a decrease in the number of available levels but result in high
precision for an application. With our chosen parameters, using
128-bit wide RNS limbs would leave us with an insufficient number
of limbs to perform a single bootstrapping operation. To strike
a balance between performance and precision, we choose to use
64-bit wide RNS limbs in this work.

Most GPUs in the market natively support 16-, 32-, and 64-bit
floating point computations as well as 4-, 8-, 32-bit integer com-
putations. Unfortunately, they lack dedicated hardware support
for 64-bit integer operations, the most common operation in FHE
workloads. Instructions for processing 64-bit integer operands are
emulated using multiple 32-bit integer instructions, making them
comparatively slower. To complement our native modular reduc-
tion, which relies on 64-bit integer operations, we add support for
hardware-backed 64-bit integer multiplier and accumulator, as well
as widen the register-file size to accommodate the large ciphertexts.
Table 4 demonstrates the decrease in total cycles for each of our
proposed native modular instructions in comparison to the MI100
GPU-emulated instructions in the baseline (vanilla) configuration.

Prior studies [28, 84] argued that dedicating resources to special-
ized 64-bit integer cores was not justifiable in terms of opportunity
cost, as workloads at the time did not necessitate INT64 support,
and emulation with 32-bit cores was sufficient. However, in the
context of FHE, wemaintain that the performance improvements at-
tained through using an upgraded vector ALU justify the additional
chip resources allocated.

3.3 LABS: Locality-Aware Block Scheduler
So far, our microarchitectural extensions primarily focused on opti-
mizing individual FHE blocks. To better leverage these new features,
we focus next on inter-block optimization opportunities, target-
ing the workgroup dispatcher within the CDNA architecture. GPU
scheduling is typically managed using streams of blocks that are
scheduled on compute units in a greedy manner [9]. The presence
of large GPU register files allows the scheduler to oversubscribe
blocks to each compute unit. However, the existing scheduler within
the CDNA architecture is not cognizant of inter-block data depen-
dencies, forcing cache flushes when transitioning from one block
to the next.

We propose a Locality-Aware Block Scheduler (LABS) designed
to schedule blocks with shared data together, thus avoiding redun-
dant on-chip cache flushes, specifically in the LDS. LABS further
benefits from our set of microarchitectural enhancements, which
relax the operational constraints during block scheduling and cre-
ate new opportunities for optimization (for instance, the (cNoC)
feature enables LDS data to be globally accessible across all CUs,
thereby allowing the scheduler to assign blocks to any available
CU). To develop LABS, we employ a well-known graph-based map-
ping solution and frame the problem of block mapping to CUs as a
compile-time Graph Partitioning Problem (GPP) [80, 85].

Graph Partitioning Problem: To develop our locality-aware
block scheduler, we use two graphs. Let 𝐺 = 𝐺 (𝑉 , 𝐸) represent a
directed acyclic compute graph with vertices 𝑉 (corresponding to
FHE blocks) and edges 𝐸 (indicating the data dependencies of the
blocks). Similarly, let 𝐺𝑎 = 𝐺𝑎 (𝑉𝑎, 𝐸𝑎) denote an undirected graph
with vertices 𝑉𝑎 (representing GPU compute units) and edges 𝐸𝑎

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Shivdikar et al.

(illustrating the communication links between compute units). Both
edge sets, 𝐸 and 𝐸𝑎 , are assumed to be weighted, with edge weights
of 𝐸 signifying the size of data transferred between related blocks,
and 𝐸𝑎 representing the bandwidth of communication between
corresponding compute units. We can then define 𝜋 : 𝑉 → 𝑉𝑎 as
a mapping of 𝑉 into 𝑉𝑎 disjoint subsets. Our objective is to find
a mapping 𝜋 that minimizes communication overhead between
compute units.

We formulate our Graph Partitioning Problem (GPP) by intro-
ducing a cost function Φ. For a graph 𝐺 , if it is partitioned such
that 𝐸𝑐 denotes the set of edge cuts, then Φ can be expressed as the
sum of the individual cut-edge weights (with (𝑣,𝑤) representing
the edge-weight of the edge connecting node 𝑣 to node𝑤). The cost
function Φ reflects the communication overhead associated with
assigning FHE blocks to separate compute units. The goal of the
graph partitioning problem is to discover a partition that evenly
distributes the load across each compute unit while minimizing the
communication cost Φ.

Φ = |𝐸𝑐 | =
∑︁

(𝑣,𝑤) ∈𝐸𝑐
| (𝑣,𝑤) |

In this equation, | (𝑣,𝑤) | signifies the data transferred between
FHE blocks. To partition the compute graph and prepare it for
mapping onto the architecture graph, we utilize a multilevel mesh
partitioning technique. For readers interested in gaining further
insights into our graph partitioning implementation of the multi-
level mesh partitioning algorithm, we recommend referring to the
work of Walshaw and Cross [85].

Architecture-aware mapping: In this work, we focus on map-
ping our partitioned subgraphs onto the set of compute units 𝑉𝑎 ,
where communication costs (both latency and bandwidth) are not
uniformly distributed across the network [75]. To uniformly distrib-
ute the communication overheads across the network, we introduce
a network cost function Γ. Here, Γ is defined as the product of in-
dividual cut-weights and their corresponding edge-weights in the
architecture graph when mapped using a mapping function 𝜋 . For-
mally, Γ is described as:

Γ =
∑︁

(𝑣,𝑤) ∈𝐸𝑐
| (𝑣,𝑤) |.| (𝜋 (𝑣), 𝜋 (𝑤)) |

In this equation, 𝜋 (𝑣) represents the mapping of block 𝑣 to a
compute unit from the set 𝑉𝑎 , after applying the mapping func-
tion 𝜋 . Additionally, | (𝜋 (𝑣), 𝜋 (𝑤)) | represents the communication
bandwidth between compute units 𝜋 (𝑣) and 𝜋 (𝑤). Similar to our
analysis with Φ, our goal is to minimize Γ. To accomplish this, we
use a compile-time optimization by applying simulated annealing,
alongside mesh partitioning, to map FHE blocks onto compute
units efficiently. The evaluation of performance improvements by
incorporating the LABS is discussed further in Section 4.

4 EVALUATION
In this section, we first give a concise overview of the GPU simula-
tor employed to model our microarchitectural extensions. Next, we
outline the evaluation methodology assumed to assess the perfor-
mance of our bootstrapping and other workload implementations.
Finally, we present evaluation results.

Table 5: MI100 GPU Parameters

Parameter Value
GPU Core Freq 1502 MHz
Process Size 7 nm
TFLOPS 23.07
Register File 15 MB
CU count 120
L1 Vector Cache 16 KB per CU
L1 Scalar Cache 16 KB
L1 Inst Cache 32 KB
Shared L2 8 MB
LDS 7.5 MB
GPU Memory 32 GB HBM2
Mem Bandwidth 1229 GB/s
Host CPU AMD EPYC 7002
Host OS Ubuntu 18.04
GPU Driver AMD ROCm 5.2.5

4.1 The NaviSim and BlockSim Simulators
In our work, we leverage NaviSim [11], a cycle-level execution-
driven GPU architecture simulator. NaviSim faithfully models the
CDNA architecture by implementing a CDNA ISA emulator and
a detailed timing simulator of all the computational components
and memory hierarchy. NaviSim utilizes the Akita simulation en-
gine [81] to enable modularity and high-performance parallel sim-
ulation. NaviSim is highly configurable and accurate and has been
extensively validated against an AMDMI100 GPU. As an execution-
driven simulator, NaviSim recreates the execution results of GPU
instructions during simulation with the help of an instruction em-
ulator for CDNA ISA [7, 12]. Currently, NaviSim supports ker-
nels written in both OpenCL [43] and the HIP programming lan-
guage [9]. For our experiments, we implement our kernels using
OpenCL. NaviSim can generate a wide range of output data to fa-
cilitate performance analysis. For performance metrics related to
individual components, NaviSim reports instruction counts, aver-
age latency spent accessing each level of cache, transaction counts
for each cache, TLB transaction counts, DRAM transaction counts,
and read/write data sizes. For low-level details, NaviSim can gen-
erate instruction traces and memory traces. Finally, NaviSim can
produce traces using the Daisen format so that users can use Daisen,
a web-based visualization tool [82], to inspect the detailed behavior
of each component.

We enhance NaviSim’s capabilities by incorporating our new
custom kernel-level simulator, BlockSim. BlockSim is designed to
enable us to identify inter-kernel optimization opportunities. With
an adjustable sampling rate for performance metrics, BlockSim
accelerates simulations, facilitating more efficient design space ex-
ploration. BlockSim generates analytical models of the FHE Blocks
to provide estimates for run times of various GPU configurations.
When the best design parameters are identified, NaviSim is then
employed to generate cycle-accurate performance metrics. Besides
supporting FHE workloads, BlockSim serves as an essential com-
ponent of NaviSim by abstracting low-level implementation de-
tails from the user, allowing them to focus on entire workloads

GME: GPU-based Microarchitectural Extensions to Accelerate Homomorphic Encryption MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

Table 6: Architecture comparison of various FHE accelerators

Parameters La
tt

ig
o

F1 BT
S

CL AR
K

FA
B

10
0x

T-
FH

E

G
M
E

GM
E-
cN

oC

GM
E-
M
O
D

GM
E-
W
M
AC

Technology (𝑛𝑚) 14 12/14 7 12/14 7 16 12 7 7
Word size (bit) 54 32 64 28 64 54 54 32 54
On-chip memory (MB) 6 64 512 256 512 43 6 20.25 15.5
Frequency (GHz) 3.5 1.0 1.2 1.0 1.0 0.3 1.2 1.4 1.5 1.68‡ 1.63‡ 1.72‡
Area (𝑚𝑚2) 122 151.4 373.6 472.3 418.3 - 815 826 700∗ + 186.2† 96.82 48.27 41.11
Power (𝑊) 91 180.4 163.2 317 281.3 225 250 400 300∗ + 107.5† 53.91 31.86 21.73

∗The CDNA architecture-based MI100 GPU chip area and power consumption are not disclosed. We display the publicly available approximated values.
†We compute the chip area and power requirements of our microarchitectural extensions using RTL components and Cadence Synthesis Solutions with the ASAP7 technology library.

‡Reported values are of maximum clock frequency 𝐹𝑚𝑎𝑥 that the design can sustain without violating timing constraints.

rather than individual kernels. BlockSim enables restructuring of
the wavefront scheduler and integrates compile-time optimizations
obtained from LABS. We utilize AMD’s CDNA architecture-based
MI100 GPU to create a baseline for FHE application evaluations.
We further validate our BlockSim findings with the MI100 GPU.

4.2 Experimental Setup
In our experiments, we determine our baseline performance using
an AMD MI100 CDNA GPU (see table 5). We then iteratively intro-
duce microarchitectural extensions and evaluate the performance
benefits of each enhancement. We first evaluate our three microar-
chitectural extensions (cNoC,MOD,WMAC), then evaluate our
compile-time optimization LABS, and conclude with a memory size
exploration to determine the impact of on-chip memory size on FHE
workloads.We evaluate these microarchitectural enhancements and
compiler optimization using NaviSim and BlockSim. To determine
the power and area overhead of our proposed microarchitectural
components, we implement them in RTL. Utilizing Cadence Genus
Synthesis Solutions, we synthesize these RTL components target-
ing an ASAP7 technology library [22] and determine the area and
power consumption for each proposed microarchitectural element.

We first evaluate our bootstrapping implementation performance,
utilizing the amortized mult time per slot metric [41]. This metric
has been used frequently in the past to perform a comparison be-
tween different bootstrapping implementations. We can compute
this metric as follows:

T𝐴.𝑆. =
Tboot +

∑𝐿−𝐿boot
ℓ=1 Tmult (ℓ)

𝐿 − 𝐿boot
.
1
𝑛

(1)

Here, Tboot stands for total bootstrapping runtime, and Lboot stands
for the number of levels that the bootstrapping operation utilizes.
The rest of the parameters are defined in Table 1. The parameters
that we have used in our implementation have an Lboot = 17 and
𝑛 = 215. In addition, we analyze the performance of two workloads:
HE-based logistic regression (HELR) [35] and encrypted ResNet-
20 [50] utilizing the CIFAR-10 dataset. For all three workloads, we
evaluate the contributions of each individual FHE building block
(see Table 2) that make up the respective workload. In addition, for

Table 7: Performance of various FHE building blocks

CM
ul

t

HE
-A

dd

HE
-M

ul
t

Ro
ta

te

Re
sc

al
e

HyPHEN-CPU [62] (𝜇𝑠) 506 202 17300 15500 3900
100x [41] (𝜇𝑠) 130 160 2960 2550 490
T-FHE [27] (𝜇𝑠) 46 37 1131 1008 77
Baseline MI100 (𝜇𝑠) 178 217 4012 3473 681
GME∗ (𝜇𝑠) 22 28 464 364 69

Speedup over HyPHEN 23× 7.2× 37.3× 42.6× 56.5×
Speedup over 100x 5.9× 5.7× 6.4× 7× 7.1×
Speedup over T-FHE 2.1× 1.3× 2.4× 2.8× 1.1×
Speedup over Baseline 8.1× 7.8× 8.6× 9.5× 9.9×

∗The values displayed here exclude contributions from the LABS optimization, as LABS is an
inter-block optimization, and the metrics provided are intended for individual blocks.

these workloads, we report the performance benefits achieved by
employing each of the proposed microarchitectural enhancements.

We also compare our implementationswith other state-of-the-art
CKKS accelerators, incorporating a diverse selection of CPU [16, 62],
GPU [27, 41, 62], FPGA [1], and ASIC [44, 45, 69, 70] platforms.1
Table 6 presents a detailed comparison of the key architectural
parameters across all the related works. Table 6 also showcases the
distribution of chip area and power requirements for each microar-
chitectural enhancement of GME. Since the maximum operating
frequency 𝐹𝑚𝑎𝑥 of our microarchitectural enhancements (1.63GHz)
is greater than the typical operating frequency of the MI100 GPU
(1.5 GHz), we do not expect our extensions to change the critical
path timings of the MI100 design. It is essential to emphasize that
operating frequencies differ across various designs, a crucial factor
to consider when comparing execution times in absolute terms.
Moreover, the ASIC designs make use of large on-chip memory,
resulting in an expensive solution, and they are also not as flexible
as CPU, GPU, and FPGA.

1In this section, we refer to the CPU implementation as Lattigo, the GPU implemen-
tation as 100x, and the CraterLake ASIC design as CL. For the other accelerators, we
use the full names from the respective papers.

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Shivdikar et al.

Bootstrapping HE-LR ResNet

arch Feature

Figure 6: Influence of individual proposedmicroarchitectural extension on architectural performancemetrics. Metrics illustrate
a cumulative profile where each enhancement builds upon the preceding set of improvements

4.3 Results
Performance of FHE Building Blocks: We begin by comparing
the performance of individual FHE blocks with the previous state-
of-the-art GPU implementation [41]. Since these are individual
FHE blocks, the reported metrics do not account for our inter-block
LABS compiler optimization. We find that HEMult and HERotate
are the most expensive operations, as they require key switching
operations that involve the most data transfers from the main mem-
ory. The next most expensive operation is HERescale, where the
runtime is dominated by the compute-intensive NTT operations.

Across the five FHE blocks mentioned in Table 7, we achieve
an average speedup of 6.4× compared to the 100x implementation.
In particular, we see a substantial performance improvement in
the most expensive operations, namely HEMult and HERotate, as
our proposed microarchitectural enhancements reduce the data
transfer time by 12× for both blocks. For HERescale, we manage to
decrease the average memory transaction latency by 13× using our
microarchitectural enhancements to the on-chip network, cNoC.
Thus making HERescale the fastest block in comparison to 100x
GPU implementation.

Impact of Microarchitectural Extensions: Figures 6 and 7
highlight the impact of each of our proposed microarchitectural
extensions as well as our compile-time optimizations across three
different workloads, i.e., bootstrapping, HE-LR, and ResNet-20.

First, our proposed concentrated 2D torus network enables ci-
phertexts to be preserved in on-chipmemory across kernels, leading
to a significant increase in compute unit utilization across work-
loads, thereby reducing the average cycles consumed per memory
transaction (see Avg. CPT in Figure 6). In fact, when comparing the
average number of cycles spent per memory transaction (average
CPT), we observe that the ResNet-20 workload consistently displays
a lower average CPT value compared to the HE-LR workload. This
indicates a higher degree of data reuse within the ResNet-20 work-
load across FHE blocks as opposed to the HE-LR workload. With
cNoC enhancement, as the data required from previous kernels is
retained in the on-chip memory, CUs are no longer starved for data
and this also results in a substantial decrease in DRAM bandwidth
utilization and DRAM traffic (the total amount of data transferred

Ba
se

lin
e

cN
oC

M
OD

LA
BS

2x
LD

S

1
1.25

1.5
1.75

2
2.25

2.5
2.75

3
3.25

3.5

Sp
ee

du
p

Bootstrap Ba
se

lin
e

cN
oC

M
OD

LA
BS

2x
LD

S

HE-LR Ba
se

lin
e

cN
oC

M
OD

LA
BS

2x
LD

S

ResNet

Figure 7: Speedup achieved from each microarchitectural
extension. The baseline refers to a vanilla MI100 GPU. The
reported speedup is cumulative, with each microarchitec-
tural enhancement building upon the previous ones

from DRAM). The L1 cache utilization decreases notably across
all three workloads for the cNoC microarchitectural enhancement.
This is due to the fact that the LDS bypasses the L1 cache, and
memory accesses to the LDS are not included in the performance
metrics of the L1 cache.

The proposedMOD extension enhances the CDNA ISA by adding
new instructions. These new instructions are complex instructions
that implement commonly used operations in FHE, like mod-red,
mod-add, and mod-mult. As these instructions are complex (com-
posed of multiple sub-instructions), they consume a higher number
of cycles than comparatively simpler instructions such as mult or
add. This is the reason for the increase in the average cycles per
instruction (CPI) metric shown in Figure 6.

The compile-time LABS optimization in our approach further
removes redundant memory transactions by scheduling blocks that
share data together, thus reducing total DRAM traffic and enhancing
CU utilization. LABS takes advantage of the on-chip ciphertext
preservation enabled by our cNoCmicroarchitectural enhancement.
Across bootstrapping, HE-LR, and ResNet-20 workloads, LABS
consistently delivers an additional speedup of over 1.5× on top of
cNoC andMOD (See Figure 7).

GME: GPU-based Microarchitectural Extensions to Accelerate Homomorphic Encryption MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada
Bo

ot
st
ra
pp
in
g

H
E-
LR

R
es
N
et
-2
0

GME

GME

GME

Figure 8: Exploring the impact of on-chip memory size on
FHE workload performance

Performance Comparison:We compare the performance of
GME with 100x implementation of FHE workloads in Table 8. GME
surpasses the previous best GPU-based implementation for boot-
strapping and HE-LR by factors of 15.7× and 14.2×, respectively.
Note that we do not compare the performance of ResNet-20 work-
load with 100x, as they do not implement this workload. With close
to double the on-chip memory (LDS), and similar peak memory
bandwidth, our microarchitectural extensions paired with our com-
piler optimization delivered significant performance improvement
across all three FHE workloads. GME significantly outperforms
the CPU implementation Lattigo by 514×, 1165×, and 427× for
bootstrapping, HE-LR, and ResNet-20 workloads, respectively. We
assessed Lattigo’s performance by executing workloads on an
Intel 8th-generation Xeon Platinum CPU with 128 GB of DDR4
memory.

Table 8: HE workloads execution time comparison of pro-
posed GME extensions with other architectures

Accelerator Arch. T𝐴.𝑆. Boot HE-
LR

ResNet
20

(𝑛𝑠) (𝑚𝑠) (𝑚𝑠) (𝑚𝑠)

Lattigo [59] CPU 8.8𝑒4 3.9𝑒4 23293 -
HyPHEN [62] CPU 2110 2.1𝑒4 - 3.7𝑒4
F1 [69] ASIC 2.6𝑒5 Yes† 1024 -
BTS [45] ASIC 45 58.9 28.4 1910
CL [70] ASIC 17 4.5 15.2 321
ARK [44] ASIC 14 3.7 7.42 125
FAB [1] FPGA 470 92.4 103 -
100x [41] V100 740 528 775 -
HyPHEN [62] V100 - 830 - 1400
T-FHE [27] A100 404 157 178 3793
Baseline MI100 863 413 658 9989
GME MI100+ 74.5 33.63 54.5 982

†F1 is limited to a single-slot bootstrapping, while others support packed bootstrapping.

In addition, GME outperforms the FPGA design implementation
of FHEworkloads, called FAB [1], by 2.7× and 1.9× for bootstrapping
and HE-LR workloads, respectively. A primary factor contributing
to this acceleration is the low operating frequency of FPGAs (the
Alveo U280 used in FAB operates at 300MHz, while GME cores can
achieve peak frequencies of 1.5GHz [21]). In their work, FAB scales
their implementation to 8 FPGAs for the HE-LR workload (referred
to as FAB-2). GME surpasses FAB-2 by 1.4×. This occurs because,
when the intended application cannot be accommodated on a single
FPGA device, considerable communication overheads negate the
advantages of scaling out.

However, GME does not outperform all ASIC implementations
shown in Table 8. While it achieves an average speedup of 18.7×
over F1 for the HE-LR workload, it falls short in comparison to
BTS, CL, and ARK due to their large on-chip memory and higher
HBM bandwidths. ASIC implementations are tailored for a single
workload. Their customized designs lack flexibility, so they cannot
easily accommodate multiple workloads across domains. Cutting-
edge implementations such as ARK [44] integrate the latest HBM3
technology, enabling them to utilize nearly twice the memory band-
width available in HBM3, as compared to HBM2 used on MI100
GPUs. CraterLake (CL) [70] incorporates extra physical layers (PHY)
to facilitate communication between DRAM and on-chip memory,
thereby enhancing the available bandwidth for FHE workloads. In
this paper, we limit our focus to an existing HBMmodel compatible
with the CDNA architecture without modifications to the physical
communication layers.

On-chip Memory Size Exploration: Finally, we look for the
ideal on-chip memory (LDS) size for the FHE workload, as shown in
Figure 8. By increasing the total LDS size from 7.5MB (which is the
current LDS size on MI100 GPU) to 15.5MB, we achieve speedups of
1.74×, 1.53×, and 1.51× for Bootstrapping, HE-LR, and ResNet-20
workloads, respectively. However, increasing the LDS size beyond
15.5MB does not result in substantial speedup, as DRAM bandwidth
becomes a bottleneck.

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Shivdikar et al.

5 DISCUSSION
In the field of accelerator design, developing general-purpose hard-
ware is of vital importance. Rather than creating a custom accel-
erator specifically for FHE, we focus on extending the capabilities
of existing GPUs to take advantage of the established ecosystems
for GPUs. General-purpose hardware, such as GPUs, reap the bene-
fits of versatile use of all microarchitectural elements present on
the GPU. In this section, we demonstrate the potential advantages
of the proposed microarchitectural enhancements across various
domains, confirming the importance of these microarchitectural
features. Our observations are based on prior works, which high-
light the potential benefits of similar optimizations across diverse
workloads. We evaluate the influence of each optimization by exam-
ining communication overheads, high data reuse, utilizing modular
reduction, or employing integer arithmetic. Table 9 presents an
overview of our findings, highlighting the potential advantages of
the proposed microarchitectural extensions across an array of other
workloads.

The recent Hopper architecture by NVIDIA for the H100 GPU
introduced a feature termed DSMEM (Distributed Shared Mem-
ory). This allows the virtual address space of shared memory to
be logically spread out across various SMs (streaming multiproces-
sors) [26]. Such a configuration promotes data sharing between
SMs, similar to the (cNoC) feature we introduced. However, the
details of the SM-to-SM network for DSMEM are not publicly avail-
able and to the best of our knowledge, the SM-to-SM connectivity
is not global but limited to the Thread Block Cluster comprised of 8
SMs. In contrast, the (cNoC) proposed by us enables global connec-
tivity to all 120 CUs in our MI100 GPU, enabling efficient all-to-all
communication. For enhancing FHE performance, it’s crucial to
substantially reduce the latency in SM-to-SM communication. We
aim to conduct a detailed analysis comparing the inter-SM com-
munication overheads of the H100 GPU to those of GME in future
work.

6 RELATEDWORK
CPU/GPU implementations: Several algorithmic implementa-
tions, such as Lattigo [58], SEAL [73], HEXL [15], HEAAN [20],
HELib [13, 34], and PALISADE [64], have recently been proposed
for FHE using the CKKS scheme. Despite the efforts put forth by
these libraries, a CPU-based implementation of FHE remains infea-
sible due to the relatively limited computational power of CPUs.

PRIFT [3] and the work by Badawi et al. [5] aims to accelerate
FHE using NVIDIA GPUs. Although they support most HE blocks,
they do not accelerate bootstrapping. 100x [41] speeds up all HE
blocks, including bootstrapping. While 100x optimizes off-chip
memory transactions through kernel-fusions, their implementation
still results in redundant memory transactions due to partitioned
on-chip memory of V100. Locality-aware block scheduling [51]
has been proposed in GPUs to maximize locality within each core;
however, LABS maximizes locality by exploiting the globally shared
LDS through the proposed (cNoC).

FPGA accelerators: Multiple prior efforts [46, 47, 66, 68] have
developed designs for FHEworkloads. However, most of them either
do not cover all HE primitives or only support smaller parameter
sets that allow computation up to a multiplicative depth of 10.

Table 9: Potential benefits of proposed microarchitectural
extensions across various workloads

Applications NOC MOD WMAC LABS

AES [36, 49] ✔ ✔ ✔ ✔

FFT [25] ✔ ✔ ✔ ✔

3D Laplace [74, 86] ✔ ✘ ✔ ✔

BFS [18, 56] ✔ ✘ ✔ ◆

K-Means [23] ✔ ✘ ✘ ✔

ConvNet2 [53] ✔ ✘ ✔ ◆

Transformer [37, 72] ✔ ✘ ✔ ◆

Monte Carlo [52] ✘ ✘ ✔ ✘

N-Queens [40] ✘ ✘ ✔ ✔

Black-Scholes [32] ✘ ✘ ✔ ✘

Fast Walsh [14] ✔ ✘ ✔ ✔
✔ Proposed optimization has the potential to significantly improve workload performance.
✘ Proposed optimization is unlikely to result in notable performance improvements.
◆ Further experimentation is necessary, as it is uncertain whether the proposed optimization will
lead to performance improvement

HEAX [66] is an FPGA-based accelerator that only speeds up CKKS
encrypted multiplication, with the remainder offloaded to the host
processor.

FAB demonstrates performance comparable to the previous GPU
implementation, 100x [41], and ASIC designs BTS [45] and F1 [69]
for certain FHE workloads. Although FPGAs show great potential
for accelerating FHE workloads, they are limited by low operating
frequencies and compute resources. Furthermore, the substantial
communication overhead and the time required to program the
FPGA discourages their wide-scale deployment [63].

ASIC accelerators: There exist several recent ASIC designs
including F1 [69], CraterLake [70], BTS [45], and ARK [44] that
accelerate the CKKS FHE scheme. F1 implementation makes use of
small 𝑁 and 𝑄 values, implementing only a single-slot bootstrap-
ping. BTS is the first ASIC proposal demonstrating the performance
of a fully-packed CKKS bootstrapping. CraterLake and ARK design
further enhance the packed CKKS bootstrapping performance and
demonstrate several orders of performance improvement across
various workloads.

7 CONCLUSION
In this work, we present an ambitious plan for extending existing
GPUs to support FHE. We propose three novel microarchitectural
extensions followed by compiler optimization. We suggest a 2D
torus on-chip network that caters to the all-to-all communication
patterns of FHE workloads. Our native modular reduction ISA ex-
tension reduces the latency of modulus reduction operation by
43%. We enable native support for 64-bit integer arithmetic to mit-
igate math pipeline throttling. Our proposed BlockSim simulator
enhances the capabilities of the open-source GPU simulator, Nav-
iSim, allowing for coarse-grained simulation for faster design space
exploration. Overall, comparing against previous state-of-the-art
GPU implementations [41], we obtain an average speedup of 14.6×
across workloads as well as outperform the CPU, the FPGA, and
some ASIC implementations.

GME: GPU-based Microarchitectural Extensions to Accelerate Homomorphic Encryption MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

ACKNOWLEDGMENTS
This research was supported in part by the Institute for Expe-
riential AI and the NSF IUCRC Center for Hardware and Em-
bedded Systems Security and Trust (CHEST), NSF CNS 2312275,
NSF CNS 2312276, and by Samsung Advanced Institute of Tech-
nology, Samsung Electronics Co., Ltd. Additionally, we acknowl-
edge the financial assistance from grant RYC2021-031966-I funded
by MCIN/AEI/10.13039/501100011033 and the “European Union
NextGenerationEU/PRTR.”

REFERENCES
[1] Rashmi Agrawal, Leo de Castro, Guowei Yang, Chiraag Juvekar, Rabia Yazicigil,

Anantha Chandrakasan, Vinod Vaikuntanathan, and Ajay Joshi. 2023. FAB: An
FPGA-based accelerator for bootstrappable fully homomorphic encryption. In
2023 IEEE International Symposium on High-Performance Computer Architecture
(HPCA). IEEE, 882–895. https://doi.org/10.1109/HPCA56546.2023.10070953

[2] Rashmi Agrawal and Ajay Joshi. 2023. On Architecting Fully Homomorphic
Encryption-based Computing Systems. https://doi.org/10.1007/978-3-031-31754-
5

[3] Ahmad Al Badawi, Louie Hoang, Chan Fook Mun, Kim Laine, and Khin Mi Mi
Aung. 2020. Privft: Private and fast text classification with homomorphic encryp-
tion. IEEE Access 8 (2020), 226544–226556.

[4] Ahmad Al Badawi, Bharadwaj Veeravalli, Jie Lin, Nan Xiao, Matsumura Kazuaki,
and Aung Khin Mi Mi. 2020. Multi-GPU design and performance evaluation of
homomorphic encryption on GPU clusters. IEEE Transactions on Parallel and
Distributed Systems 32, 2 (2020), 379–391.

[5] Ahmad Al Badawi, Bharadwaj Veeravalli, Chan Fook Mun, and Khin Mi Mi Aung.
2018. High-performance FV somewhat homomorphic encryption on GPUs: An
implementation using CUDA. IACR Transactions on Cryptographic Hardware and
Embedded Systems (2018), 70–95.

[6] AMD 2020. AMD Instinct MI100 Instruction Set Architecture. AMD.
https://www.amd.com/content/dam/amd/en/documents/instinct-tech-
docs/instruction-set-architectures/instinct-mi100-cdna1-shader-instruction-
set-architecture.pdf Reference Guide.

[7] AMD Inc. 2020. "AMD Instinct MI100" Instruction Set Architecture, Reference
Guide. https://developer.amd.com/wp-content/resources/CDNA1_Shader_ISA_
14December2020.pdf

[8] AMD Inc. 2020. Introducing CDNA Architecture, The All-New AMD GPU
Architecture for the Modern Era of HPC & AI. https://www.amd.com/system/
files/documents/amd-cdna-whitepaper.pdf

[9] AMD Inc. 2022. HIP Programming Guide. https://rocmdocs.amd.com/en/latest/
Programming_Guides/HIP-GUIDE.html

[10] James Balfour and William J Dally. 2006. Design tradeoffs for tiled CMP on-chip
networks. In ACM International conference on supercomputing 25th anniversary
volume. 390–401. https://doi.org/10.1145/2591635.2667187

[11] Yuhui Bao, Yifan Sun, Zlatan Feric, Michael Tian Shen, Micah Weston, José L
Abellán, Trinayan Baruah, John Kim, Ajay Joshi, and David Kaeli. 2022. NaviSim:
A Highly Accurate GPU Simulator for AMD RDNA GPUs. In Proceedings of the
International Conference on Parallel Architectures and Compilation Techniques.
333–345. https://doi.org/10.1145/3559009.3569666

[12] Trinayan Baruah, Kaustubh Shivdikar, Shi Dong, Yifan Sun, Saiful A Mojumder,
Kihoon Jung, José L Abellán, Yash Ukidave, Ajay Joshi, John Kim, et al. 2021.
Gnnmark: A benchmark suite to characterize graph neural network training on
gpus. In 2021 IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS). IEEE, 13–23. https://doi.org/10.1109/ISPASS51385.2021.
00013

[13] Flavio Bergamaschi. [n. d.]. HELib. https://github.com/homenc/HElib
[14] Dusan Bikov and Iliya Bouyukliev. 2018. Parallel fast Walsh transform algorithm

and its implementation with CUDA on GPUs. Cybernetics and Information
Technologies 18, 5 (2018), 21–43. https://eprints.ugd.edu.mk/id/eprint/20026

[15] Fabian Boemer, Sejun Kim, Gelila Seifu, Fillipe DM de Souza, and Vinodh Gopal.
2021. Intel HEXL: accelerating homomorphic encryption with Intel AVX512-
IFMA52. In Proceedings of the 9th on Workshop on Encrypted Computing & Applied
Homomorphic Cryptography. 57–62. https://doi.org/10.1145/3474366.3486926

[16] Jean-Philippe Bossuat, Christian Mouchet, Juan Troncoso-Pastoriza, and Jean-
Pierre Hubaux. 2021. Efficient bootstrapping for approximate homomorphic
encryption with non-sparse keys. In Advances in Cryptology–EUROCRYPT 2021:
40th Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Zagreb, Croatia, October 17–21, 2021, Proceedings, Part I.
Springer, 587–617.

[17] C Bunn, Harrison Barclay, A Lazarev, F Yusuf, J Fitch, J Booth, Kaustubh Shivdikar,
and D Kaeli. 2019. Student cluster competition 2018, team northeastern university:
Reproducing performance of a multi-physics simulations of the Tsunamigenic

2004 Sumatra Megathrust earthquake on the AMD EPYC 7551 architecture. Par-
allel Comput. 90 (2019), 102568. https://doi.org/10.1016/j.parco.2019.102568

[18] Federico Busato and Nicola Bombieri. 2014. BFS-4K: an efficient implementation
of BFS for kepler GPU architectures. IEEE Transactions on Parallel and Distributed
Systems 26, 7 (2014), 1826–1838. https://doi.org/10.1109/TPDS.2014.2330597

[19] Jung Hee Cheon, Kyoohyung Han, and Duhyeong Kim. 2020. Faster Bootstrap-
ping of FHE over the Integers. In Information Security and Cryptology–ICISC 2019:
22nd International Conference, Seoul, South Korea, December 4–6, 2019, Revised
Selected Papers. Springer, 242–259. https://doi.org/10.1007/978-3-030-40921-0_15

[20] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. 2017. Homo-
morphic encryption for arithmetic of approximate numbers. In Advances in
Cryptology–ASIACRYPT 2017: 23rd International Conference on the Theory and
Applications of Cryptology and Information Security, Hong Kong, China, December
3-7, 2017, Proceedings, Part I 23. Springer, 409–437.

[21] Young-kyu Choi, Yuze Chi, Jie Wang, Licheng Guo, and Jason Cong. 2020. When
hls meets fpga hbm: Benchmarking and bandwidth optimization. arXiv preprint
arXiv:2010.06075 (2020). https://doi.org/10.48550/arXiv.2010.06075

[22] Lawrence T Clark, Vinay Vashishtha, Lucian Shifren, Aditya Gujja, Saurabh
Sinha, Brian Cline, Chandarasekaran Ramamurthy, and Greg Yeric. 2016. ASAP7:
A 7-nm finFET predictive process design kit. Microelectronics Journal 53 (2016),
105–115. https://doi.org/10.1016/j.mejo.2016.04.006

[23] Salvatore Cuomo, Vincenzo De Angelis, Gennaro Farina, Livia Marcellino, and
Gerardo Toraldo. 2019. A GPU-accelerated parallel K-means algorithm. Com-
puters & Electrical Engineering 75 (2019), 262–274. https://doi.org/10.1016/j.
compeleceng.2017.12.002

[24] Leo de Castro, Rashmi Agrawal, Rabia Yazicigil, Anantha Chandrakasan, Vinod
Vaikuntanathan, Chiraag Juvekar, and Ajay Joshi. 2021. Does fully homomorphic
encryption need compute acceleration? arXiv preprint arXiv:2112.06396 (2021).
https://doi.org/10.48550/arXiv.2112.06396

[25] Xinqiang Ding, Yujin Wu, Yanming Wang, Jonah Z Vilseck, and Charles L
Brooks III. 2020. Accelerated CDOCKER with GPUs, parallel simulated annealing,
and fast Fourier transforms. Journal of chemical theory and computation 16, 6
(2020), 3910–3919. https://doi.org/10.1021/acs.jctc.0c00145

[26] Anne C Elster and Tor A Haugdahl. 2022. Nvidia hopper gpu and grace cpu
highlights. Computing in Science & Engineering 24, 2 (2022), 95–100. https:
//doi.org/10.1109/MCSE.2022.3163817

[27] Shengyu Fan, Zhiwei Wang, Weizhi Xu, Rui Hou, Dan Meng, and Mingzhe Zhang.
2023. Tensorfhe: Achieving practical computation on encrypted data using gpgpu.
In 2023 IEEE International Symposium on High-Performance Computer Architecture
(HPCA). IEEE, 922–934. https://doi.org/10.1109/HPCA56546.2023.10071017

[28] Zhuo Feng, Zhiyu Zeng, and Peng Li. 2010. Parallel on-chip power distribution
network analysis on multi-core-multi-GPU platforms. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems 19, 10 (2010), 1823–1836. https:
//doi.org/10.1109/TVLSI.2010.2059718

[29] Robin Geelen, Michiel Van Beirendonck, Hilder VL Pereira, Brian Huffman, Tynan
McAuley, Ben Selfridge, Daniel Wagner, Georgios Dimou, Ingrid Verbauwhede,
Frederik Vercauteren, et al. 2022. BASALISC: Flexible asynchronous hardware
accelerator for fully homomorphic encryption. arXiv preprint arXiv:2205.14017
(2022). https://doi.org/10.48550/arXiv.2205.14017

[30] Craig Gentry. 2009. Fully homomorphic encryption using ideal lattices. In Proceed-
ings of the forty-first annual ACM symposium on Theory of computing. 169–178.

[31] Craig Gentry and Shai Halevi. 2011. Implementing gentry’s fully-homomorphic
encryption scheme. In Advances in Cryptology–EUROCRYPT 2011: 30th Annual In-
ternational Conference on the Theory and Applications of Cryptographic Techniques,
Tallinn, Estonia, May 15–19, 2011. Proceedings 30. Springer, 129–148.

[32] Scott Grauer-Gray, William Killian, Robert Searles, and John Cavazos. 2013.
Accelerating financial applications on the GPU. In Proceedings of the 6thWorkshop
on General Purpose Processor Using Graphics Processing Units. 127–136. https:
//doi.org/10.1145/2458523.2458536

[33] Saransh Gupta, Rosario Cammarota, and Tajana Šimunić Rosing. 2022. Memfhe:
End-to-end computing with fully homomorphic encryption in memory. ACM
Transactions on Embedded Computing Systems (2022). https://doi.org/10.1145/
3569955

[34] Shai Halevi and Victor Shoup. 2014. Algorithms in helib. In Advances in
Cryptology–CRYPTO 2014: 34th Annual Cryptology Conference, Santa Barbara, CA,
USA, August 17-21, 2014, Proceedings, Part I 34. Springer, 554–571.

[35] Kyoohyung Han, Seungwan Hong, Jung Hee Cheon, and Daejun Park. 2019.
Logistic regression on homomorphic encrypted data at scale. In Proceedings of
the AAAI conference on artificial intelligence, Vol. 33. 9466–9471.

[36] Keisuke Iwai, Takakazu Kurokawa, and Naoki Nisikawa. 2010. AES encryption
implementation on CUDA GPU and its analysis. In 2010 First International Con-
ference on Networking and Computing. IEEE, 209–214. https://doi.org/10.1109/IC-
NC.2010.49

[37] Mojan Javaheripi, Gustavo de Rosa, Subhabrata Mukherjee, Shital Shah,
Tomasz Religa, Caio Cesar Teodoro Mendes, Sebastien Bubeck, Fari-
naz Koushanfar, and Debadeepta Dey. 2022. LiteTransformerSearch:

https://doi.org/10.1109/HPCA56546.2023.10070953
https://doi.org/10.1007/978-3-031-31754-5
https://doi.org/10.1007/978-3-031-31754-5
https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/instruction-set-architectures/instinct-mi100-cdna1-shader-instruction-set-architecture.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/instruction-set-architectures/instinct-mi100-cdna1-shader-instruction-set-architecture.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/instruction-set-architectures/instinct-mi100-cdna1-shader-instruction-set-architecture.pdf
https://developer.amd.com/wp-content/resources/CDNA1_Shader_ISA_14December2020.pdf
https://developer.amd.com/wp-content/resources/CDNA1_Shader_ISA_14December2020.pdf
https://www.amd.com/system/files/documents/amd-cdna-whitepaper.pdf
https://www.amd.com/system/files/documents/amd-cdna-whitepaper.pdf
https://rocmdocs.amd.com/en/latest/Programming_Guides/HIP-GUIDE.html
https://rocmdocs.amd.com/en/latest/Programming_Guides/HIP-GUIDE.html
https://doi.org/10.1145/2591635.2667187
https://doi.org/10.1145/3559009.3569666
https://doi.org/10.1109/ISPASS51385.2021.00013
https://doi.org/10.1109/ISPASS51385.2021.00013
https://github.com/homenc/HElib
https://eprints.ugd.edu.mk/id/eprint/20026
https://doi.org/10.1145/3474366.3486926
https://doi.org/10.1016/j.parco.2019.102568
https://doi.org/10.1109/TPDS.2014.2330597
https://doi.org/10.1007/978-3-030-40921-0_15
https://doi.org/10.48550/arXiv.2010.06075
https://doi.org/10.1016/j.mejo.2016.04.006
https://doi.org/10.1016/j.compeleceng.2017.12.002
https://doi.org/10.1016/j.compeleceng.2017.12.002
https://doi.org/10.48550/arXiv.2112.06396
https://doi.org/10.1021/acs.jctc.0c00145
https://doi.org/10.1109/MCSE.2022.3163817
https://doi.org/10.1109/MCSE.2022.3163817
https://doi.org/10.1109/HPCA56546.2023.10071017
https://doi.org/10.1109/TVLSI.2010.2059718
https://doi.org/10.1109/TVLSI.2010.2059718
https://doi.org/10.48550/arXiv.2205.14017
https://doi.org/10.1145/2458523.2458536
https://doi.org/10.1145/2458523.2458536
https://doi.org/10.1145/3569955
https://doi.org/10.1145/3569955
https://doi.org/10.1109/IC-NC.2010.49
https://doi.org/10.1109/IC-NC.2010.49

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Shivdikar et al.

Training-free Neural Architecture Search for Efficient Language Mod-
els. Advances in Neural Information Processing Systems 35 (2022),
24254–24267. https://proceedings.neurips.cc/paper_files/paper/2022/hash/
9949e6906be6448230cdba9a4cb2d564-Abstract-Conference.html

[38] Malith Jayaweera, Kaustubh Shivdikar, Yanzhi Wang, and David Kaeli. 2021.
JAXED: Reverse Engineering DNNArchitectures Leveraging JIT GEMMLibraries.
In 2021 International Symposium on Secure and Private Execution Environment
Design (SEED). IEEE, 189–202. https://doi.org/10.1109/SEED51797.2021.00030

[39] Natalie Enright Jerger, Tushar Krishna, and Li-Shiuan Peh. 2017. On-chip
networks. Synthesis Lectures on Computer Architecture 12, 3 (2017), 1–210.
https://picture.iczhiku.com/resource/eetop/SYieGarAzskjOvnm.pdf

[40] Cao Jianli, Chen Zhikui,Wang Yuxin, andGuoHe. 2020. Parallel genetic algorithm
for N-Queens problem based on message passing interface-compute unified
device architecture. Computational Intelligence 36, 4 (2020), 1621–1637. https:
//doi.org/10.1111/coin.12300

[41] Wonkyung Jung, Sangpyo Kim, Jung Ho Ahn, Jung Hee Cheon, and Younho Lee.
2021. Over 100x faster bootstrapping in fully homomorphic encryption through
memory-centric optimization with GPUs. IACR Transactions on Cryptographic
Hardware and Embedded Systems (2021), 114–148.

[42] Wonkyung Jung, Eojin Lee, Sangpyo Kim, Jongmin Kim, Namhoon Kim, Keewoo
Lee, Chohong Min, Jung Hee Cheon, and Jung Ho Ahn. 2021. Accelerating fully
homomorphic encryption through architecture-centric analysis and optimization.
IEEE Access 9 (2021), 98772–98789. https://doi.org/10.1109/ACCESS.2021.3096189

[43] David R Kaeli, Perhaad Mistry, Dana Schaa, and Dong Ping Zhang.
2015. Heterogeneous computing with OpenCL 2.0. Morgan Kaufmann,
Burlington,MA,USA. https://dahlan.unimal.ac.id/files/ebooks2/2015%203rd%
20Heterogeneous%20Computing%20with%20OpenCL%202.0.pdf

[44] Jongmin Kim, Gwangho Lee, Sangpyo Kim, Gina Sohn, Minsoo Rhu, John Kim,
and Jung Ho Ahn. 2022. Ark: Fully homomorphic encryption accelerator with
runtime data generation and inter-operation key reuse. In 2022 55th IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE, 1237–1254.

[45] Sangpyo Kim, Jongmin Kim, Michael Jaemin Kim, Wonkyung Jung, John Kim,
Minsoo Rhu, and Jung Ho Ahn. 2022. BTS: An accelerator for bootstrappable
fully homomorphic encryption. In Proceedings of the 49th Annual International
Symposium on Computer Architecture. 711–725. https://doi.org/10.1145/3470496.
3527415

[46] Sunwoong Kim, Keewoo Lee, Wonhee Cho, Jung Hee Cheon, and Rob A Ruten-
bar. 2019. FPGA-based accelerators of fully pipelined modular multipliers for
homomorphic encryption. In 2019 International Conference on ReConFigurable
Computing and FPGAs (ReConFig). IEEE, 1–8.

[47] Sunwoong Kim, Keewoo Lee, Wonhee Cho, Yujin Nam, Jung Hee Cheon, and
Rob A Rutenbar. 2020. Hardware architecture of a number theoretic transform
for a bootstrappable RNS-based homomorphic encryption scheme. In 2020 IEEE
28th Annual International Symposium on Field-Programmable Custom Computing
Machines (FCCM). IEEE, 56–64.

[48] Miroslav Knezevic, Frederik Vercauteren, and Ingrid Verbauwhede. 2010. Faster
interleaved modular multiplication based on Barrett and Montgomery reduction
methods. IEEE Trans. Comput. 59, 12 (2010), 1715–1721. https://doi.org/10.1109/
TC.2010.93

[49] Deguang Le, Jinyi Chang, Xingdou Gou, Ankang Zhang, and Conglan Lu. 2010.
Parallel AES algorithm for fast data encryption on GPU. In 2010 2nd international
conference on computer engineering and technology, Vol. 6. IEEE, V6–1. https:
//doi.org/10.1109/ICCET.2010.5486259

[50] Eunsang Lee, Joon-Woo Lee, Junghyun Lee, Young-Sik Kim, Yongjune Kim, Jong-
Seon No, and Woosuk Choi. 2022. Low-complexity deep convolutional neural
networks on fully homomorphic encryption using multiplexed parallel convolu-
tions. In International Conference on Machine Learning. PMLR, 12403–12422.

[51] Minseok Lee, Seokwoo Song, Joosik Moon, John Kim, Woong Seo, Yeongon
Cho, and Soojung Ryu. 2014. Improving GPGPU resource utilization through
alternative thread block scheduling. In 2014 IEEE 20th International Symposium
on High Performance Computer Architecture (HPCA). 260–271. https://doi.org/10.
1109/HPCA.2014.6835937

[52] Victor W Lee, Changkyu Kim, Jatin Chhugani, Michael Deisher, Daehyun Kim,
Anthony D Nguyen, Nadathur Satish, Mikhail Smelyanskiy, Srinivas Chennupaty,
Per Hammarlund, et al. 2010. Debunking the 100X GPU vs. CPU myth: an
evaluation of throughput computing on CPU and GPU. In Proceedings of the
37th annual international symposium on Computer architecture. 451–460. https:
//doi.org/10.1145/1815961.1816021

[53] Xiaqing Li, Guangyan Zhang, H Howie Huang, Zhufan Wang, and Weimin
Zheng. 2016. Performance analysis of GPU-based convolutional neural networks.
In 2016 45th International conference on parallel processing (ICPP). IEEE, 67–76.
https://doi.org/10.1109/ICPP.2016.15

[54] Neal Livesay, Gilbert Jonatan, Evelio Mora, Kaustubh Shivdikar, Rashmi Agrawal,
Ajay Joshi, José L Abellán, John Kim, and David Kaeli. 2023. Accelerating finite
field arithmetic for homomorphic encryption on GPUs. 2023 IEEE MICRO (2023).
https://doi.org/10.1109/MM.2023.3253052

[55] Souhail Meftah, Benjamin Hong Meng Tan, Khin Mi Mi Aung, Lu Yuxiao, Lin
Jie, and Bharadwaj Veeravalli. 2022. Towards high performance homomorphic

encryption for inference tasks on CPU: An MPI approach. Future Generation
Computer Systems 134 (2022), 13–21.

[56] Duane Merrill, Michael Garland, and Andrew Grimshaw. 2012. Scalable GPU
graph traversal. ACM Sigplan Notices 47, 8 (2012), 117–128.

[57] Daniele Micciancio and Oded Regev. 2009. Lattice-based cryptography. Post-
quantum cryptography (2009), 147–191.

[58] Christian Vincent Mouchet, Jean-Philippe Bossuat, Juan Ramón Troncoso-
Pastoriza, and Jean-Pierre Hubaux. 2020. Lattigo: A multiparty homomorphic
encryption library in go. In Proceedings of the 8th Workshop on Encrypted Com-
puting and Applied Homomorphic Cryptography. 64–70.

[59] Christian Vincent Mouchet, Jean-Philippe Bossuat, Juan Ramón Troncoso-
Pastoriza, and Jean-Pierre Hubaux. 2022. Lattigo v4. Online: https://github.
com/tuneinsight/lattigo. EPFL-LDS, Tune Insight SA.

[60] OpenAI. 2023. March 20 CHATGPT outage: Here’s what happened. https:
//openai.com/blog/march-20-chatgpt-outage

[61] Ali Şah Özcan, Can Ayduman, Enes Recep Türkoğlu, and Erkay Savaş. 2023.
Homomorphic Encryption on GPU. IEEE Access (2023).

[62] Jaiyoung Park, Donghwan Kim, and Jung Ho Ahn. 2023. HyPHEN: A Hybrid
Packing Method and Optimizations for Homomorphic Encryption-Based Neural
Network. (2023). https://doi.org/10.48550/arXiv.2302.02407

[63] Artur Podobas, Kentaro Sano, and Satoshi Matsuoka. 2020. A survey on coarse-
grained reconfigurable architectures from a performance perspective. IEEE Access
8 (2020), 146719–146743. https://doi.org/10.1109/ACCESS.2020.3012084

[64] Yuriy Polyakov. [n. d.]. Palisade Library. https://gitlab.com/palisade/palisade-
release

[65] Thomas Pöppelmann, Tobias Oder, and Tim Güneysu. 2015. High-Performance
Ideal Lattice-Based Cryptography on 8-Bit ATxmega Microcontrollers. In Progress
in Cryptology—LATINCRYPT. Springer, 346–365. https://doi.org/10.1145/3092951

[66] M Sadegh Riazi, Kim Laine, Blake Pelton, and Wei Dai. 2020. HEAX: An ar-
chitecture for computing on encrypted data. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Languages and
Operating Systems. 1295–1309.

[67] Sujoy Sinha Roy, Ahmet Can Mert, Sunmin Kwon, Youngsam Shin, Donghoon
Yoo, et al. 2021. Accelerator for computing on encrypted data. Cryptology ePrint
Archive (2021).

[68] Sujoy Sinha Roy, Furkan Turan, Kimmo Jarvinen, Frederik Vercauteren, and
Ingrid Verbauwhede. 2019. FPGA-based high-performance parallel architec-
ture for homomorphic computing on encrypted data. In 2019 IEEE International
symposium on high performance computer architecture (HPCA). IEEE, 387–398.

[69] Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Srinivas Devadas, Ronald
Dreslinski, Christopher Peikert, and Daniel Sanchez. 2021. F1: A fast and
programmable accelerator for fully homomorphic encryption. In MICRO-54:
54th Annual IEEE/ACM International Symposium on Microarchitecture. 238–252.
https://doi.org/10.1145/3466752.3480070

[70] Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Nathan Manohar,
Nicholas Genise, Srinivas Devadas, Karim Eldefrawy, Chris Peikert, and Daniel
Sanchez. 2022. Craterlake: a hardware accelerator for efficient unbounded com-
putation on encrypted data. In Proceedings of the 49th Annual International Sym-
posium on Computer Architecture. 173–187.

[71] Mohanad Sarhan, Siamak Layeghy, Marcus Gallagher, and Marius Portmann.
2023. From zero-shot machine learning to zero-day attack detection. International
Journal of Information Security (2023), 1–13. https://link.springer.com/article/10.
1007/s10207-023-00676-0

[72] Teven Le Scao, Thomas Wang, Daniel Hesslow, Lucile Saulnier, Stas Bekman,
M Saiful Bari, Stella Bideman, Hady Elsahar, Niklas Muennighoff, Jason Phang,
et al. 2022. What Language Model to Train if You Have One Million GPU Hours?
arXiv preprint arXiv:2210.15424 (2022). https://doi.org/10.48550/arXiv.2210.15424

[73] SEAL 2023. Microsoft SEAL (release 4.1). https://github.com/Microsoft/SEAL.
Microsoft Research, Redmond, WA..

[74] Jungkyun Shin, Wansoo Ha, Hyunggu Jun, Dong-Joo Min, and Changsoo Shin.
2014. 3D Laplace-domain full waveform inversion using a single GPU card.
Computers & Geosciences 67 (2014), 1–13. https://doi.org/10.1016/j.cageo.2014.02.
006

[75] Kaustubh Shivdikar. 2021. SMASH: Sparse Matrix Atomic Scratchpad Hash-
ing. Ph. D. Dissertation. https://www.researchgate.net/publication/352018010_
SMASH_Sparse_Matrix_Atomic_Scratchpad_Hashing Copyright - Database
copyright ProQuest LLC; ProQuest does not claim copyright in the individual
underlying works; Last updated - 2023-03-07.

[76] Kaustubh Shivdikar, Gilbert Jonatan, Evelio Mora, Neal Livesay, Rashmi Agrawal,
Ajay Joshi, José L Abellán, John Kim, and David Kaeli. 2022. Accelerating poly-
nomial multiplication for homomorphic encryption on GPUs. In 2022 IEEE Inter-
national Symposium on Secure and Private Execution Environment Design (SEED).
IEEE, 61–72. https://doi.org/10.1109/SEED55351.2022.00013

[77] Kaustubh Shivdikar, Ahan Kak, and Kshitij Marwah. 2015. Automatic image an-
notation using a hybrid engine. In 2015 Annual IEEE India Conference (INDICON).
IEEE, 1–6. https://doi.org/10.1109/INDICON.2015.7443338

[78] Kaustubh Shivdikar, Kaushal Paneri, and David Kaeli. [n. d.]. Speeding up
DNNs using HPL based Fine-grained Tiling for Distributed Multi-GPU Training.

https://proceedings.neurips.cc/paper_files/paper/2022/hash/9949e6906be6448230cdba9a4cb2d564-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/9949e6906be6448230cdba9a4cb2d564-Abstract-Conference.html
https://doi.org/10.1109/SEED51797.2021.00030
https://picture.iczhiku.com/resource/eetop/SYieGarAzskjOvnm.pdf
https://doi.org/10.1111/coin.12300
https://doi.org/10.1111/coin.12300
https://doi.org/10.1109/ACCESS.2021.3096189
https://dahlan.unimal.ac.id/files/ebooks2/2015%203rd%20Heterogeneous%20Computing%20with%20OpenCL%202.0.pdf
https://dahlan.unimal.ac.id/files/ebooks2/2015%203rd%20Heterogeneous%20Computing%20with%20OpenCL%202.0.pdf
https://doi.org/10.1145/3470496.3527415
https://doi.org/10.1145/3470496.3527415
https://doi.org/10.1109/TC.2010.93
https://doi.org/10.1109/TC.2010.93
https://doi.org/10.1109/ICCET.2010.5486259
https://doi.org/10.1109/ICCET.2010.5486259
https://doi.org/10.1109/HPCA.2014.6835937
https://doi.org/10.1109/HPCA.2014.6835937
https://doi.org/10.1145/1815961.1816021
https://doi.org/10.1145/1815961.1816021
https://doi.org/10.1109/ICPP.2016.15
https://doi.org/10.1109/MM.2023.3253052
https://github.com/tuneinsight/lattigo
https://github.com/tuneinsight/lattigo
https://openai.com/blog/march-20-chatgpt-outage
https://openai.com/blog/march-20-chatgpt-outage
https://doi.org/10.48550/arXiv.2302.02407
https://doi.org/10.1109/ACCESS.2020.3012084
https://gitlab.com/palisade/palisade-release
https://gitlab.com/palisade/palisade-release
https://doi.org/10.1145/3092951
https://doi.org/10.1145/3466752.3480070
https://link.springer.com/article/10.1007/s10207-023-00676-0
https://link.springer.com/article/10.1007/s10207-023-00676-0
https://doi.org/10.48550/arXiv.2210.15424
https://github.com/Microsoft/SEAL
https://doi.org/10.1016/j.cageo.2014.02.006
https://doi.org/10.1016/j.cageo.2014.02.006
https://www.researchgate.net/publication/352018010_SMASH_Sparse_Matrix_Atomic_Scratchpad_Hashing
https://www.researchgate.net/publication/352018010_SMASH_Sparse_Matrix_Atomic_Scratchpad_Hashing
https://doi.org/10.1109/SEED55351.2022.00013
https://doi.org/10.1109/INDICON.2015.7443338

GME: GPU-based Microarchitectural Extensions to Accelerate Homomorphic Encryption MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

([n. d.]).
[79] Victor Shoup. 2009. A computational introduction to number theory and algebra.

Cambridge University Press. https://shoup.net/ntb/ntb-v2.pdf
[80] Mohit Srinivasan, Ahan Kak, Kaustubh Shivdikar, and Chirag Warty. 2016. Dy-

namic power allocation using Stackelberg game in a wireless sensor network. In
2016 IEEE Aerospace Conference. IEEE, 1–10. https://doi.org/10.1109/AERO.2016.
7500918

[81] Yifan Sun, Trinayan Baruah, Saiful A. Mojumder, Shi Dong, Xiang Gong, Shane
Treadway, Yuhui Bao, SpencerHance, CarterMcCardwell, Vincent Zhao, Harrison
Barclay, Amir Kavyan Ziabari, Zhongliang Chen, Rafael Ubal, José L. Abellán,
John Kim, Ajay Joshi, and David Kaeli. 2019. MGPUSim: Enabling Multi-GPU
Performance Modeling and Optimization. In Proceedings of the 46th International
Symposium on Computer Architecture (Phoenix, Arizona) (ISCA ’19). Association
for Computing Machinery, New York, NY, USA, 197–209. https://doi.org/10.
1145/3307650.3322230

[82] Yifan Sun, Yixuan Zhang, Ali Mosallaei, Michael D Shah, Cody Dunne, and
David Kaeli. 2021. Daisen: A Framework for Visualizing Detailed GPU Execution.
Eurographics Conference on Visualization 40, 3 (2021), 239–250.

[83] Swadhin Thakkar, Kaustubh Shivdikar, and ChiragWarty. 2017. Video steganogra-
phy using encrypted payload for satellite communication. In 2017 IEEE Aerospace

Conference. IEEE, 1–11. https://doi.org/10.1109/AERO.2017.7943978
[84] Ananta Tiwari, Kristopher Keipert, Adam Jundt, Joshua Peraza, Sarom S Leang,

Michael Laurenzano, Mark S Gordon, and Laura Carrington. 2015. Performance
and energy efficiency analysis of 64-bit ARM using GAMESS. In Proceedings of the
2nd International Workshop on Hardware-Software Co-Design for High Performance
Computing. 1–10. https://doi.org/10.1145/2834899.2834905

[85] Chris Walshaw and Mark Cross. 2001. Multilevel mesh partitioning for heteroge-
neous communication networks. Future generation computer systems 17, 5 (2001),
601–623. https://doi.org/10.1016/S0167-739X(00)00107-2

[86] Lei Xiao, Guoxiang Yang, Kunyang Zhao, and Gang Mei. 2019. Efficient parallel
algorithms for 3D Laplacian smoothing on the GPU. Applied Sciences 9, 24 (2019),
5437. https://doi.org/10.3390/app9245437

[87] Runhua Xu, Nathalie Baracaldo, and James Joshi. 2021. Privacy-preserving
machine learning: Methods, challenges and directions. arXiv preprint
arXiv:2108.04417 (2021). https://doi.org/10.48550/arXiv.2108.04417

[88] Tian Ye, Rajgopal Kannan, and Viktor K Prasanna. 2022. FPGA Acceleration of
Fully Homomorphic Encryption over the Torus. In 2022 IEEE High Performance
Extreme Computing Conference (HPEC). IEEE, 1–7.

https://shoup.net/ntb/ntb-v2.pdf
https://doi.org/10.1109/AERO.2016.7500918
https://doi.org/10.1109/AERO.2016.7500918
https://doi.org/10.1145/3307650.3322230
https://doi.org/10.1145/3307650.3322230
https://doi.org/10.1109/AERO.2017.7943978
https://doi.org/10.1145/2834899.2834905
https://doi.org/10.1016/S0167-739X(00)00107-2
https://doi.org/10.3390/app9245437
https://doi.org/10.48550/arXiv.2108.04417

	Abstract
	1 Introduction
	2 Background
	2.1 AMD CDNA Architecture
	2.2 CKKS FHE Scheme

	3 GME Architecture
	3.1 cNoC: CU-side interconnect
	3.2 Enhancing the Vector ALU
	3.3 LABS: Locality-Aware Block Scheduler

	4 Evaluation
	4.1 The NaviSim and BlockSim Simulators
	4.2 Experimental Setup
	4.3 Results

	5 Discussion
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

