
Accelerating Polynomial Multiplication 
for Homomorphic Encryption on GPUs

Kaustubh Shivdikar1, Gilbert Jonathan3, Evelio Mora4, Neal Livesay1, Rashmi Agrawal2,

Ajay Joshi2, Jose L. Abellan4, John Kim3, David Kaeli1

1 2
3

4



Outline

Introduction

What is HE?

Problems with 
HE

Barrett's 
Reduction

Correctional 
subtractions

Fused 
Hadamard 
Product

Redundant 
operations

Shared 
Memory

Temporal locality

2D NTT

Spatial locality

Conclusion

Results

Future work



HE is a type of encryption that allows 

computation to be run on encrypted 
operands

HE schemes are lattice-based, making 

them quantum resistant

What is Homomorphic Encryption?



What is Homomorphic Encryption?



“

"HE could give rise to a new internet protocol, HTTPZ, that would 

standardize end-to-end encryption and replace HTTPS as the 

default protocol"

--- By R. Hindi, "People shouldn’t care about privacy", ZAMA, Aug 2021



HE Bottlenecks

• Polynomial multiplication is the key 
bottleneck for lattice-based cryptography 
and HE

• Poly-mult is typically implemented with 
Number Theoretic Transform (NTT)

• NTT relies heavily on modular reduction 
operation

Polynomial Multiplication



Problems with HE

4–6 orders of 

magnitude slower

Native support for 

modular reduction

Skewed memory 

access patterns

Large bit width 

integer operations



Contributions

Fused Hadamard Product

Mixed Radix 2D NTTPersistent Shared Memory

Optimized Barrett’s Reduction

Fewer Correctional Subtractions Reduces Operational Complexity

Increased Temporal Locality Increased Spatial Locality



Optimized Barrett's Reduction

• NTT is dominated by modulo operation

• Modulo computation involves expensive division 
operation

• Barrett's reduction replaces division with a set of 
bit-shift and multiplication operations



Optimized Barrett's Reduction

• Proposed Barrett's reduction reduces number 
of correctional subtractions

• Future Work: Natively supported modular 
reduction with hardware implementation



Fused Hadamard Product



Fused Hadamard Product



Fused Hadamard Product

Fused NTT, iNTT, and Hadamard Product
Last layer 

of NTT

Hadamard 

Product

First layer 

of iNTT



Persistent Shared Memory

• NTT is a memory-bound kernel

• Each stage of NTT generates 
intermediate results for 
subsequent stages

• Intermediate results of each stage 
are cached on shared memory

• Removes redundant global 
memory accesses

V100 GPU Memory Hierarchy



Persistent Shared Memory

• Shared memory use provides 25%
speedup over global memory

• L1 and L2 cache memory pressure 
drops significantly

• Only works for NTT sizes that fit 
in shared memory size (N<211)



Mixed Radix 2D NTT



Mixed Radix 2D NTT

• 2D NTT increases compute 
costs

• Reduces memory pressure

• Preserves spatial locality

• Row-wise and Column-wise 
NTT can be pipelined



Concluding Remarks

HE is a popular memory-intensive 
workload with high computational 

demands

Presented four optimizations Future Work / Architectural Feature Requests

Achieved speedup

• CPU: 123.13x

• GPU: 2.37x

• Larger integer bit width support for GPU

• Native modular reduction support

Explored key bottlenecks in HE

• Algorithmic improvements

• Low-level kernel improvements



Any questions?

Thank you!

--- This work was supported in part by the Institute for Experiential AI, the Harold Alfond

Foundation, the NSF IUCRC Center for Hardware and Embedded Systems Security and Trust

(CHEST), the RedHat Collaboratory, and project grant PID2020-112827GBI00 funded by

MCIN/AEI/10.13039/501100011033.


