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What is Homomorphic Encryption? &

HE is a type of encryption that allows HE schemes are lattice-based, making
computation to be run on encrypted them quantum resistant
operands
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&

"HE could give rise to a new internet protocol, HTTPZ, that would

standardize end-to-end encryption and replace HTTPS as the

default protocol"

000

( /I\ not secure | google.com

HTTP:

No encryption

Everyone can
see everything
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HTTPS:

Data is encrypted
when sent, but not
when processing
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HTTPZ:

Data is encrypted
end-to-end




HE Bottlenecks

Polynomial multiplication is the key
bottleneck for lattice-based cryptography

NTT

and HE

NTT ! —>a®b

©

) 4

Poly-multis typically implemented with
Number Theoretic Transform (NTT) b—>

Hadamard

NTT Product

NTT relies heavily on modular reduction
operation

Polynomial Multiplication



Problems with HE

4—6 orders of
magnitude slower

Large bit width
integer operations

@ Native support for
modular reduction

Skewed memory
access patterns
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Optimized Barrett's Reduction

Remainder = z % g

Remainder = x — ({EJ % q)
q

Algorithm 2 Classical Barrett reduction

NTT is dominated by modulo operation

Modulo computationinvolves expensive division
operation

: e Require: m =len(q) <p —2,0 <z < 22", p=[2"]
Barrett's reduction replaces division with a set of Ensure: rem — 2 mod g q
bit-shift and multiplication operations e o> (m—1)

quot < (¢ x u) > (m+1)
rem <— x — quot X q
if rem > ¢ then
rem <— rem — ¢
if rem > ¢ then
rem <— rem — q
return rem
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Optimized Barrett's Reduction &
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Modular reduction
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Fused Hadamard Product
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Fused Hadamard Product
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Fused Hadamard Product

_ agby + a’a1by mod ¢

apby + a1by mod q

P- ,— agby + o?a1b; mod g
1/2
KW apb; + a1bp mod q
bl T . 1 T

T Hadamard

Product

Fused NTT, INTT, and Hadamard Product
Last layer First layer

of NTT of INTT




Persistent Shared Memory

NTT is a memory-bound kernel

Each stage of NTT generates
intermediateresults for
subsequent stages

Intermediate results of each stage
are cached on shared memory

Removes redundant global
memory accesses
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20I I

Workload
mmm NTT

Shared memory use provides 25%
speedup over global memory

L1 and L2 cache memory pressure
drops significantly

Only works for NTT sizes that fit
in shared memory size (N<211%)
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Mixed Radix 2D NTT

Single Row NTT L

1XN2 1XN2 N1><N2

Arrange elements in 2D matrix Row-wise NTT Column-wise NTT
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B Duration Memory Throughput —A— L2% Throughput
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Concluding Remarks &

& HE is a popular memory-intensive Explored key bottlenecksin HE ~‘
workload with high computational
demands .

Algorithmicimprovements

 Low-level kernel improvements

S8 Presented four optimizations Future Work / Architectural Feature Requests ;ﬁ
0000

Achieved speedup « Largerinteger bit width support for GPU
W +  CPU:123.13x

* Native modular reduction support
{,,m} » GPU:2.37x
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Thank you!

Any gquestions?
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