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Abstract—Fully Homomorphic Encryption (FHE) is a rapidly developing technology that enables
computation directly on encrypted data, making it a compelling solution for security in
cloud-based systems. In addition, modern FHE schemes are believed to be resistant to quantum
attacks. Although FHE offers unprecedented potential for security, current implementations
suffer from prohibitively high latency. Finite field arithmetic operations, particularly the
multiplication of high-degree polynomials, are key computational bottlenecks. The parallel
processing capabilities provided by modern Graphical Processing Units (GPUs) make them
compelling candidates to target these highly parallelizable workloads. In this article, we discuss
methods to accelerate polynomial multiplication with GPUs, with the goal of making FHE
practical.

COMPUTER SECURITY continues to grow in
importance as computation and storage of sen-
sitive data is increasingly outsourced to cloud-
based computing services. Moreover, with the
rapid development of quantum computers, we ex-
pect to see new classes of threats looming that can
defeat the security of long-trusted cryptosystems.

Fully Homomorphic Encryption (FHE) is an
emerging technology with the potential to ad-
dress both of these problems. FHE enables com-
putation directly on encrypted data, concealing
both operands and results from wily attackers on
untrusted computing servers (see Figure 1). The
security of many modern FHE schemes is based
on the hardness of the Ring Learning with Errors
problem [1], which is presumed to be resistant to
quantum attacks.

A major hurdle to deploying FHE in real-
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Figure 1. FHE enables computation on encrypted
operands, providing strong security in the cloud-
computing era.

world applications is overcoming the high compu-
tational costs associated with its workloads. For-
tunately, FHE workloads are highly parallelizable,
making FHE a strong candidate for GPU acceler-
ation. We focus our attention on two key compu-
tational bottlenecks: (1) modular reduction, or the
computation of the remainder in integer division;
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and (2) the Number Theoretic Transform used
to efficiently multiply polynomials. We begin by
presenting background on these bottlenecks, fol-
lowed by some potential approaches to accelerate
them on a GPU. To that end, we leverage a
number of architectural features such as shared
memory and intrinsic instructions.

We build on our preliminary exploration into
accelerating FHE [2]. The main contributions of
this work include: a modulus selection methodol-
ogy for Barrett reduction; design and evaluation
of a “lazy” Barrett-based NTT optimization; eval-
uation of a Residue Number System based exten-
sion of our prior NTT implementation, including
an evaluation of 32-bit vs 64-bit word sizes; and
an evaluation of multiple methods for computing
“1/N -scaling” in inverse NTTs.

Barrett Reduction
We begin with an investigation of one of the

most well-known and widely-used modular re-
duction algorithms: Barrett reduction. In particu-
lar, we discuss the costly correctional subtraction
operation appearing in computations involving
Barrett reduction, and present novel methods to
significantly decrease the number of these opera-
tions.

Background: Modular Arithmetic and the
Correctional Subtraction

Let x mod q denote the remainder of a non-
negative integer x divided by a positive integer
q. The naive method for performing modular
reduction (i.e., the computation of x mod q) is
via an integer division operation: x mod q =
x−⌊x/q⌋×q. However, integer division is com-
putationally expensive. Moreover, integer division
typically takes a number of cycles that is highly
dependent on the data, making it susceptible to
side-channel attacks [3]. Fortunately, there are
a number of attractive alternatives for perform-
ing modular reduction—especially in conjunction
with arithmetic operations such as addition and
multiplication—that avoid undesirable integer di-
vision operations.

For example, Algorithm 1 specifies a simple
and efficient computation of the modular reduc-
tion of a sum. Observe that, assuming a and b are
each reduced (i.e., they lie in [0, q)), then either
a + b is reduced or a + b lies in [q, 2q) and re-

quires a single correctional subtraction to become
reduced (see lines 2–3). Correctional subtractions
are a common feature in modular reduction and
arithmetic algorithms. Fortunately, correctional
subtractions can be implemented without branch
instructions, avoiding control divergence that can
significantly impact performance on GPUs.

Algorithm 1 Baseline modular addition algo-
rithm
Require: 0 ≤ a, b < q, len(q) ≤ β− 1
Ensure: sum = (a+ b) mod q

1: sum← a+ b
2: if sum ≥ q then
3: sum← sum− q
4: return sum

Note that the bit-length (i.e., the number of
bits in the binary representation) of the modulus
q is limited to be at most one less than the word
length β, preventing overflow of the intermediate
operations (e.g., a+ b).

Algorithm 2 specifies the classical Barrett
reduction algorithm commonly used to efficiently
reduce products. The key idea underlying Barrett
reduction is that it replaces a computation of
the quotient ⌊x/q⌋ with a computation of an
“approximate quotient”

quot =

⌊
⌊ x
2m−1 ⌋⌊ 2

2m

q
⌋

2m+1

⌋
, (1)

where m = len(q). Provided the “Barrett con-
stant” µ = ⌊ 22m

q
⌋ is precomputed, the approxi-

mate quotient can be efficiently computed without
integer division, as the divisions by powers of two
in lines 1–2 can be implemented via bit shifts
(which are highly efficient operations on GPUs).

The number of correctional subtractions re-
quired to fully reduce x via classical Barrett
reduction equals the difference ⌊x/q⌋ − quot
between the actual and the approximate quotient.
Provided x is sufficiently small (i.e., less than
22m), this number is either zero, one, or two (lines
4–7).

Omitting Correctional Subtractions
In the original paper introducing Barrett re-

duction, Paul Barrett remarked—without fur-
ther qualifications—that his algorithm requires a
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Algorithm 2 Classical Barrett reduction
Require: m = len(q) ≤ β − 2, 0 ≤ x < 22m,

µ = ⌊ 22m
q
⌋

Ensure: rem = x mod q
1: c← ⌊ x

2m−1 ⌋
2: quot← ⌊ c×µ

2m+1 ⌋
3: rem← x− quot× q
4: if rem ≥ q then
5: rem← rem− q
6: if rem ≥ q then
7: rem← rem− q
8: return rem

second conditional subtraction “only in 1% of
cases” [4]. This motivates the following question:
Is it possible to modify Barrett’s algorithm so that
the second correctional subtraction instruction
(i.e., lines 6–7) may be omitted?

Improved Quotient Approximation To ad-
dress this question, we first consider an approach
that involves modifying the classical quotient
approximation. Dhem and Quisquater [5] intro-
duced the following generalization of Barrett’s
approximate quotient, with parameters α and β:

quot =

⌊
⌊ x
2m+β ⌋⌊ 2

m+α

q
⌋

2m−β

⌋
. (2)

Each instantiation (α, β) corresponds to both an
upper bound on the number of required correc-
tional subtractions and an upper bound on the
bit-length of the modulus in the corresponding
reduction algorithm. These two upper bounds
are directly related, and thus, present a trade-
off. Instantiations requiring as few as zero and
as many as three correctional subtractions have
demonstrated favorable performance for various
applications [6].

Many prior studies and open-source libraries
(e.g., the well-known OpenFHE library [7]) use
the instantiation (α, β) = (m + 3,−2), which
requires at most one correctional subtraction and
restricts the modulus length to at most four less
than the word length (e.g., a 28-bit modulus on a
single-precision 32-bit word on a GPU).

To the best of our knowledge, the instantia-
tion (α, β) = (m + 1,−2) does not appear in
any paper or open-source library. This apparently

Algorithm 3 BetterBarrett reduction: Dhem–
Quisquater with (α, β) = (m+ 1,−2)
Require: m = len(q) ≤ β − 2, 0 ≤ x < 22m,

µ = ⌊ 22m+1

q
⌋

Ensure: rem = x mod q
1: c← ⌊ x

2m−2 ⌋
2: quot← ⌊ c×µ

2m+3 ⌋
3: rem← x− quot× q
4: if rem ≥ q then
5: rem← rem− q
6: return rem

overlooked instantiation, which we call Better-
Barrett, is specified in Algorithm 3. Similar to
the instantiation used by OpenFHE, BetterBar-
rett requires at most one correctional subtraction.
However, BetterBarrett only restricts the modulus
length to at most two less than the word length,
making it an attractive alternative for applications
where large moduli are desirable (such as FHE).

Observe that BetterBarrett shares the same
restriction on its modulus as classical Barrett
reduction. As such, BetterBarrett may be viewed
as a more performant replacement for classical
Barrett reduction (as shown in Figure 2). We are
not aware of a practical context where classical
Barrett is preferable to BetterBarrett.

Modulus Selection Next, we examine a sec-
ond approach for optimizing Barrett reduction
that takes the choice of modulus into consid-
eration. Recall that classical Barrett reduction
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modular reduction implementations for 28-, 29-, and
30-bit moduli. The “builtin reduction” uses the CUDA
% construct for modular reduction. BetterBarrett has
a 1.22× speedup over classical Barrett reduction for
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requires at most two correctional subtractions to
fully reduce an integer x in [0, 22len(q)). This
prompts an interesting question: Are there any
moduli q for which classical Barrett reduction
requires at most one correctional subtraction to
reduce any integer in [0, (q − 1)2] (and thus
any product, the common use case for Barrett
reduction)?

A naive approach to determining whether a
given modulus q satisfies this property involves
a brute-force verification that ⌊x/q⌋ − quot ≤ 1
for all x in [0, (q−1)2]. We proved in Theorem 1
that the number of required verifications can be
reduced by a factor of q.

Theorem 1:
Barrett reduction requires at most k correctional

subtractions to fully reduce any x in [0, L] if

j −
⌊
⌊ j×q
2m+β ⌋ × µ

2m−β

⌋
≤ k (3)

for all j in [0, ⌊L/q⌋].

Proof:
The claim follows from the fact that the quotient
function x 7→ ⌊x/q⌋ and approximate quotient
function x 7→ quot(x) are monotone increasing,
with the former remaining constant on intervals
[j × q, j × (q + 1)) for each integer j.

Using a search algorithm based on Theorem 1,
we found that moduli q which require at most one
correctional subtraction to fully reduce a product
via classical Barrett reduction are surprisingly
common. For example, of the 395 30-bit primes q
that are “negacyclic-friendly” for N = 216 (i.e.,
moduli that are relevant for FHE), 192 require at
most one correctional subtraction to fully reduce
a product. This provides yet another alternative
to the widely used Dhem–Quisquater reduction
corresponding to (α, β) = (m+3,−2) that does
not impose a further restriction on the modulus
length.

In general, this modulus selection approach
may be useful in contexts—such as implemen-
tations of NTT based on the Residue Number
System—where a relatively large set of moduli
must be selected from a heavily restricted class
of candidates. A currently prevalent modulus se-
lection approach involves simply choosing the
largest several moduli from the candidate set; see

e.g., the Microsoft Simple Encrypted Arithmetic
Library (SEAL).

Polynomial Multiplication
Next, we shift our attention from modular

multiplication to polynomial multiplication. More
specifically, we focus on the Number Theo-
retic Transform (NTT), an algorithm commonly
used to efficiently implement polynomial mul-
tiplication in the context of Fully Homomor-
phic Encryption. Throughout, we fix a degree-
bound N and represent a polynomial

∑N−1
i=0 aix

i

as an N -dimensional coefficient vector a =
(a0, a1, . . . , aN−1).

Background: The Number Theoretic Transform
The naive approach to multiplying polyno-

mials requires the computation of order N2

products and sums. This can be reduced to or-
der N log(N) using the celebrated Fast Fourier
Transform (FFT). FFT consists of an iteration
of stages, in which pairs of coefficients are
transformed via a butterfly operation. There are
numerous variations of the butterfly operation,
but a classical baseline is the Cooley–Tukey (CT)
butterfly defined below:

buttCT
ζ

(
a0

a1

)
=

(
a0 + a1

a0 − ζ × a1

)
(4)

In the context of FHE, the term “polynomial
multiplication” typically refers to negacyclic con-
volution, a slight variant of the usual polynomial
multiplication. On hardware platforms such as
CPUs and GPUs, negacyclic convolution is com-
monly implemented via an efficient combination
of two specialized variants of the FFT, known
as the merged NTT (specified in Algorithm 4)
and the merged inverse NTT (iNTT). In this case,
the negacyclic convolution of a and b can be
computed via the expression 1

N
iNTT(NTT(a)⊙

NTT(b)). For further details, see [8]. We hence-
forth omit the modifier “merged” for brevity.

Lazy Butterfly Optimization
Harvey introduced a specification for an effi-

cient “lazy” variant of the butterfly operation [9].
An NTT implemented with Harvey’s lazy butter-
fly optimization omits a correctional subtraction
in each modular product. Although the interme-
diate operations are partially computed (hence,
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Algorithm 4 The Number Theoretic Transform
Require: N = 2n, q negacyclic-friendly prime,

twiddle factors Ψbr in bit-reversed order,
a = (a0, a1, . . . , aN−1) ∈ (Zq)

N

1: m← 1
2: k ← N/2
3: while m < N do
4: for i = 0 to m− 1 do
5: jF irst← 2× i× k
6: jLast← jF irst+ k − 1
7: ζ ← Ψbr[m+ i]
8: for j = jF irst to jLast do

9:

(
a[j]

a[j + k]

)
←buttCT

ζ

(
a[j]

a[j + k]

)
10: m← 2×m
11: k ← k/2
12: return a

the qualifier “lazy”), the final result is correct.
This results in a total of N( logN

2
− 1) fewer

correctional subtractions for each NTT.
Harvey’s optimization is specified for NTTs

based on Shoup’s method, an approach for com-
puting NTTs that requires precomputed modifi-
cations to the twiddle factors to be implemented
efficiently. We propose a Barrett-based version of
Harvey’s lazy butterfly that requires no precom-
puted modifications.

Our lazy Barrett-based butterfly is specified
in Algorithm 5. We define the truncated Barrett
reduction function barretttrunc

q to be Barrett re-
duction (e.g., BetterBarrett) with a correctional
subtraction omitted (i.e., lines 4–5).

Our lazy Barrett-based Number Theoretic
Transform is defined by making the following
modifications to Algorithm 4: (1) further con-
straining the modulus by q < 2len(q)−1/2; (2)
replacing the butterfly in line 9 with the lazy
butterfly specified in Algorithm 5; and (3) apply-
ing a correctional subtraction to each entry of the
output greater than or equal to q.

Theorem 2:
The lazy Barrett-based NTT is correct.

Proof:
It suffices to show that the input to barretttrunc

q

in line 2 of Algorithm 5 lies in the prescribed
domain, [0, 22len(q)). If ζ lies in [0, q) and a1 lies

Algorithm 5 A lazy Barrett-based butterfly
Require: 0 ≤ a0, a1 ≤ 2(q − 1), 0 ≤ ζ < q,

m = len(q) ≤ β− 2, q < 2m−1/2

Ensure: 0 ≤ b0, b1 ≤ 2(q − 1),
b0 mod q = (a0 + ζ × a1) mod q,
b1 mod q = (a0 − ζ × a1) mod q

1: prod← ζ × a1

2: r ← barretttrunc
q (prod)

3: b0 ← a0 + prod
4: b1 ← a0 − prod
5: if b0 ≥ 2q then
6: b0 ← b0 − 2q
7: if b1 ≥ 2q then
8: b1 ← b1 − 2q

9: return
(
b0
b1

)

in [0, 2(q − 1)), then 0 ≤ ζ × a1 ≤ 2(q − 1)2.
This is bounded above by 22len(q) since q <
2len(q)−1/2.

Background: The Residue Number System
To guarantee a sufficient level of security for

FHE, it is necessary that the set ZQ of coefficients
be sufficiently large. For example, it is common to
assume len(Q) > 1000. To efficiently implement
NTT over such large coefficients on a hardware
platform with significantly smaller word lengths
(e.g., the 32- or 64-bit data types available on
many GPUs), we use the well-known Residue
Number System (RNS).

To use the RNS, we choose Q to be a product
of distinct word-sized, negacyclic-friendly primes
q1, q2, . . . , qℓ, each of equal length. Then a com-
putation of an NTT with respect to Q can be
replaced by a computation of ℓ NTTs with respect
to the ℓ distinct prime moduli. The number ℓ,
called the number of limbs, is inversely related to
the modulus length m by ℓ = Q

m
. This implies

an interesting trade-off between the workload size
(i.e., the total number of butterflies computed in
ℓ NTTs) and the operational complexity (i.e., the
complexity of arithmetic operations with respect
to the m-bit moduli).

Efficient Methods to Accelerate
Polynomial Multiplication on GPU

Given the large size N and a large modulus Q
for each polynomial in FHE, polynomial multi-
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plication requires a significant amount of com-
putation. Fortunately, polynomial multiplication
algorithms based on NTT (and, more generally,
FFT) are highly parallelizable and can exploit
the massive number of threads and high memory
throughput on modern GPUs.

GPU architectures are based on the Single
Instruction Multiple Thread (SIMT) programming
model where a group of threads (called warps)
execute instructions over a collection of data in
parallel (in a lockstep manner). These warps are
grouped into blocks, which are further grouped
into grids. In particular, we target the NVIDIA
V100 GPU, which consists of 128 KB L1 data
and instruction caches per streaming multipro-
cessor (SM), a multi-banked shared L2 cache
(6.1 MB), and 16 GB HBM2 global memory.
Each SM also has a low latency user-configurable
cache called shared memory (each configurable in
size up to 96 KB). As we will explain, we tai-
lor our implementations by applying incremental
optimizations that are aimed at harnessing these
underlying architectural features to speed up our
FHE workloads.

We obtain performance metrics for our kernels
using the following tools: the NVIDIA Binary
Instrumentation Tool (NVBit) for tracing memory
transactions, the Nsight Compute kernel profiler
for fetching performance counters, and the Nsight
Systems performance analysis tool to obtain ker-
nel scheduler performance and measure synchro-
nization overheads. Our experiments provide in-
sights into our kernel implementations and are
aimed at mitigating the performance impacts of
microarchitectural bottlenecks.

For all of our implementations, we use Bet-
terBarrett to implement modular multiplication.
We consider implementations based on both 32-
bit and 64-bit data types, using 30-bit and 62-
bit moduli, respectively (the largest permitted bit-
lengths for BetterBarrett reduction). We fix N =
216 for the NTT size. We use len(Q) = 1860 for
the modulus length. Using the Residue Number
System, this choice of modulus length translates
to 62 and 30 limbs for our 32-bit and 64-bit
implementations, respectively. For each limb, we
use the merged NTT algorithm.
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Figure 3. Performance analysis of single-limb NTT
kernels employing shared memory optimization in
comparison to global memory kernels.

GPU Implementations and Analysis
Next, we discuss a series of incremental op-

timizations targeting the GPU architecture.
Our baseline NTT implementation employs

the hybrid-kernel optimization [10], which con-
sists of a combination of single-stage and multi-
stage GPU kernels. This approach leverages the
following observation: after k stages of NTT
have been executed, the remaining computation
can be subdivided into 2k sub-computations, each
operating on a distinct set of N/2k coefficients.

We outline the hybrid-kernel approach for
N = 216 that has 16 stages. During the first
five stages, a naive single-stage kernel approach
assigns one kernel per stage and synchronizes
between kernels with inter-block synchronization
to ensure all blocks have access to updated data.
In practice, this is achieved by using a barrier
on kernel finish. After the fifth stage, the re-
maining computation can be subdivided into sub-
computations, each operating on a distinct set
of 211 = 2048 coefficients. For each of these
sub-computations, a multi-stage kernel approach
assigns the associated set of coefficients to a
1024-thread block. Multi-stage kernels exchange
inter-block synchronizations for intra-block syn-
chronizations, where the barrier only affects the
threads of a block, ensuring that the data in shared
memory is updated so we can continue with the
next stage. This does not affect the rest of the
blocks, allowing them to continue computation
without interruption.
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Additionally, multi-stage kernels effectively
leverage shared memory for efficient coefficient
storage. Using shared memory mitigates redun-
dant memory accesses (reducing memory pres-
sure on the L1 and L2 caches) while increasing
compute throughput. In Figure 3, we see the
impact of shared memory on single-limb NTT
and inverse NTT kernels. Incorporating shared
memory provides over 20% improvement in the
compute throughput of NTT, while significantly
reducing the demands on L1 and L2 data caches
(shared memory bandwidth does not contribute to
L1 and L2 cache bandwidth, but does contribute
to DRAM bandwidth).

Radix Configurations Furthermore, we ex-
perimented with various configurations of higher-
radix butterflies. The radix of a butterfly corre-
sponds to the number of its operands. An increase
in the radix results in a decrease in both the
number of stages in each NTT and the number of
kernel launches (and the associated kernel launch
overhead). However, an increase in the radix can
also reduce the amount of parallelism as each
thread processes more data. This trade-off can be
seen in Figure 4. We achieved the best perfor-
mance with a mixed 4/16-radix implementation.

Hierarchical NTT To further increase block-
level parallelism, we implemented a (two-
dimensional) hierarchical NTT [11]. We refer to
our implementation as our 2D NTT. In our 2D

NTT, a set of 216 coefficients are arranged into
a 28 × 28 row-major matrix. Processing consists
of two steps. In the first step, a 28-point NTT
is performed on each of the 28 columns. In the
second step, a 28-point NTT is performed on
each of the 28 rows. Block-level synchronizations
occur between these two steps. We assign each of
the 28-point NTTs to a single block, resulting in
256 blocks per step. Each step maps to a kernel,
where each thread computes a single butterfly per
stage and performs thread-level synchronizations
between stages. This approach allows us to make
extensive use of shared memory, while reducing
the pressure on L1 and L2 data caches.

32-bit versus 64-bit Word Lengths The
choice of word length is associated with a trade-
off between operational complexity and workload
size (i.e., the number of NTTs, or limbs, in the
workload). Figure 5 presents performance metrics
for both 32-bit and 64-bit implementations over
various values of the modulus Q. The evaluation
is based on two assumptions. First, we fix the
NTT size as N = 216. In practice, the value of
N depends on the value of Q. Second, we model
the relationship between the number of limbs ℓ
and the modulus length m as ℓ =

⌈
Q
m

⌉
. As seen

in Figure 5, the baseline NTT runtimes for the 32-
bit and 64-bit implementations are similar. This
result aligns with prior work [12] that found a
“negligible difference” in the runtimes associated
with these word lengths.

We see how our DRAM throughput is im-
pacted by the use of shared memory. In our
2D NTT implementation, we use shared memory
throughout the entire computation, whereas the
baseline implementation requires five stages to
read coefficients from global memory directly.
The resulting latency from those accesses reduces
the number of active warps as they must wait
for data to arrive, resulting in a degradation of
compute throughput.

In 2D NTT, 64-bit operations take more cycles
to execute than 32-bit operations, thus 64-bit
operations are more effective in hiding memory
latencies. In addition, we find that the reduced
workload size resulting from using 64-bit opera-
tions further reduces the impact of extra execution
cycles associated with 64-bit operations.
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Comparison of 1/N -Scaling Methods If
a and b are polynomials, their product can
be computed via the following expression:
1
N
iNTT(NTT(a)⊙NTT(b)), where NTT de-

notes the Number Theoretic Transform, iNTT its
inverse, and ⊙ denotes the Hadamard product. In
this section, we compare the performance of three
methods of performing the 1/N -scaling: two
which are commonly used, and a third method
using pre-computation. The naive approach sim-
ply scales the output of iNTT by 1/N .

However, the 1/N -scaling does not need to
occur at the end. It is straightforward to verify
that scaling commutes with butterfly operations,
stages in NTTs, and entire NTTs (and their
inverses). This enables a second approach to
perform 1/N -scaling, which consists of scaling
the output of each butterfly by 1/2. We refer to
this approach as butterfly scaling. Note that 1/2-
scaling can be efficiently computed on the GPU’s
ALU via bit-shifts and sums. A third approach
involves moving half of these 1/2-scalings to pre-
computation in the twiddle factor array, which we
refer to as twiddle factor scaling.

We collected performance metrics for each
of these three methods, for both our 32-bit and
64-bit baseline inverse NTT implementations. As
expected, the naive 1/N -scaling was the slow-
est. Butterfly scaling provided 1.29% and 3.85%
speedups respectively. Twiddle factor scaling pro-
vided the most significant speedups at 3.13% and
4.86% speedups respectively. This was also to be
expected, as much of the computation is moved
into pre-computation.

Lazy Arithmetic To investigate the perfor-
mance improvements provided by our lazy
Barrett-based NTT algorithm, we collected per-
formance metrics for both lazy and non-lazy
variants for both the baseline and 2D NTT ker-
nels. Our results are summarized in Figure 6. In
our baseline implementations, laziness provides
4.3% and 6.7% speedups for our 32-bit and
64-bit baseline implementations, respectively. In
our 2D implementations, laziness gives 2.6% and
9.0% speedups respectively. This performance
improvement is largely due to an increase in
memory throughput (DRAM, L1 cache, and L2
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cache throughput), as shown in Figure 6.

Conclusion
Finite field arithmetic operations are signifi-

cant computational bottlenecks in Fully Homo-
morphic Encryption, impeding the widespread
deployment of FHE (and lattice-based cryptog-
raphy more generally) in real-world systems. We
present optimizations to classical algorithms that
can decrease the number of correctional sub-
tractions required, resulting in significant per-
formance improvements. In addition, in highly
parallel workloads such as Number Theoretic
Transforms, we can obtain further speedup by
carefully mapping kernels to many-core systems
(e.g., GPUs). We found that applying all of
the proposed optimizations processes a 2.08×
speedup over a state-of-the-art NTT implementa-
tion. For FHE to be deployed in next-generation
systems, there still remain performance barriers to
overcome. Some potential paths forward include
using larger word sizes, as well as leveraging
multi-GPU systems.
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